Forschungsinstitut der Forschungsgemeinschaft für Elektrische Anlagen und Stromwirtschaft e.V Name der Forschungsstelle(n)

12660 N / III

AiF-Vorhaben-Nr. / GAG

1.11.2000 bis 30.04.2003 Bewilligungszeitraum

Schlussbericht für den Zeitraum : 01.11.2000 bis 30.04.2003

zu dem aus Haushaltsmitteln des BMWi über die

geförderten Forschungsvorhaben

Forschungsthema :

Mechanische Wirkungen von Kurzschlusskräften bei Schaltanlagen mit Bündelleitern

Mannheim, 29. August 2003 Ort, Datum

Unterschrift der/des Projektleiter(s)

Inhaltsverzeichnis

			Seite
1	Fors	schungsthema	3
2	Zusammenfassung		
3	Forschungsinhalt		
	3.1	Wissenschaftliche Problemstellung	4
	3.2	Forschungsziele und Lösungsweg	5
4	Versuchsanordnung		
	4.1	Aufbau	7
		4.1.1 100-kV-Anordnung	8
		4.1.2 400-kV-Anordnung	11
	4.2	Messungen	13
		4.2.1 Messung der Portalkrafte	13
		4.2.3 Messung der Abstandshalterbeanspruchung	16
		4.2.4 Leiterauslenkungen	17
5	Versuchsprogramm		
	5.1	Ermittlung der Steifigkeit und Eigenfrequenz der Portale, ESL- Referenzmessung	18
	5.2	Kurzschlussversuche	19
6	Versuchsergebnisse		
	6.1	Mechanische Kenndaten	22
		6.1.1 Portalfedersteifigkeit, ESL-Referenzmessung	22
		6.1.2 Eigenfrequenzen	23
	6.2	Kurzschlusskräfte	24
		6.2.1 Portalkrafte	24
		6.2.3 Kräfte in den Abstandshaltern	36
	6.3	Leiterauslenkungen	37
7	Aus	blick	38
8	Literatur		
9	Anhang		
	9.1	Daten zu den Versuchsaufbauten	40
	9.2	Exemplarische Zusammenstellung von Oszillogrammen	43
	9.3	Grafische Auswertung der gemessenen Kraftmaxima	54
	9.4	Tabellarische Ergebnisübersicht	72

1 Forschungsthema

Mechanische Wirkungen von Kurzschlusskräften bei Schaltanlagen mit Bündelleitern

2 Zusammenfassung

Im nachfolgend beschriebenen AiF-Forschungsvorhaben Nr. 12660N, gefördert aus Haushaltsmitteln des Bundesministerium für Wirtschaft und Arbeit über die Arbeitsgemeinschaft industrieller Forschungsvereinigungen "Otto von Guericke" e.V. (AiF) wurden die mechanischen Wirkungen von Kurzschlusskräften bei Hochspannungs-Freiluft-Schaltanlagen mit Bündelleitern experimentell untersucht.

Untersucht wurden zwei Varianten, die im folgenden als 100-kV-Anordnung und 400-kV-Anordnung bezeichnet werden. Sie unterscheiden sich in der Abspannhöhe, dem Phasenabstand und dem Seilzug (Durchhang). Weitere variierte Parameter bei den Untersuchungen waren die Kurzschlussstromstärke, die Kurzschlussdauer, die Art und Anzahl der Abstandshalter sowie der Teilleiterabstand. Neben den Messungen verschiedenster Krafteinwirkungen während der Kurzschlussversuche wurden auch die Federsteifigkeit und Eigenfrequenz der Portalanordnungen ermittelt. Dies dient dazu, die Nachvollziehbarkeit mittels Modellberechnungen zu ermöglichen.

Ausgewertet wurden, sofern dies an den jeweiligen Messstellen aus den erfassten zeitlichen Kraftverläufen eindeutig zuzuordnen war, jeweils die sogenannten Kontraktions-, die Ausschwing- und die Leiterfallmaxima für die Seilzug- bzw. Portalkräfte sowie für die inneren Portalkräfte bzw. die am Mastfuß wirkenden Kräfte. Die Auswertungstabellen sind diesem Bericht vollständig beigefügt. Es handelt sich um Excel-Tabellen, die auf mögliche weitere Auswertungen aus den zur Verfügung gestellten Oszillogrammen angelegt sind, und die ebenfalls auf CD zur Verfügung gestellt werden können.

Auch alle Oszillogramme der Kurzschlussversuche liegen digital vor und können auf PClesbaren CDs zur Verfügung gestellt werden. Diesem Bericht sind je ein vollständiger Oszillogrammsatz aus zwei Versuchsvarianten exemplarisch beigefügt.

Ebenso liegen Zusammenstellungen von Maßen und Gewichten z.B. der Abspannkonstruktionen und der Anschlussschlaufen vor.

Es ist davon auszugehen, dass die Ergebnisse der Untersuchungen dieses durchgeführten Forschungsvorhabens die veranlassenden, interessierten DKE-, IEC- und CIGRE-Gremien in die Lage versetzen, die von ihnen beabsichtigten weiterführenden theoretischen Studien in die Wege zu leiten und durchzuführen, damit ein normungsfähiges Berechnungsverfahren für Anlagen der betrachteten Bauart gefunden wird.

Das Ziel des Forschungsvorhabens wurde erreicht.

3 Forschungsinhalt

3.1 Wissenschaftliche Problemstellung

Der erforderliche Nachweis der Kurzschlussfestigkeit von Freiluft-Hochspannungsschaltanlagen lässt sich im Gegensatz zu typgeprüften, fabrikfertigen Anlagen praktisch nur rechnerisch führen. Diese Berechnung muss bei Neubauten in die Konstruktionsphase fallen, da ihre Ergebnisse entsprechend der durch Netzberechnungen zu ermittelnden Kurzschlussleistungen die Auslegung der Anlage an einem bestimmten Punkt des Netzes beeinflusst. Bei den hier behandelten Anlagen mit Seilleitern sind Abspannportale, ihre Fundamente sowie die Stützisolatoren von Sammelschienen, Trennschaltern und Leistungsschaltern sowie von Wandlern einschließlich Fundamenten hinsichtlich ihrer Kurzschlussfestigkeit zu beurteilen.

Für die rechnerische Beurteilung der Bemessung stehen prinzipiell zwei unterschiedliche Verfahren zur Verfügung.

 Die Norm DIN EN 60865-1 [1] identisch mit IEC 60865-1 [2] beschreibt ein praxisorientiertes Berechnungsverfahren für die Kurzschlussbelastung und die entsprechende mechanische Auslegung der Schaltanlage. Die Handhabung ist verhältnismäßig leicht, weshalb es in der Literatur als einfaches Rechenverfahren bezeichnet wird. Das Verfahren berücksichtigt durch eingebaute Sicherheiten, die möglichen Variationen der relevanten strukturbedingten mechanischen Einflüsse der Konstruktionsteile. Nachteilig und Anlass für das vorliegende Forschungsvorhaben ist, dass zur Zeit - insbesondere bei Anlagen mit Seilleitern - noch nicht alle üblichen Anordnungen berechenbar und hinsichtlich der Bemessung von Portalen und ihrer Fundamente noch keine gesicherten Lösungen vorhanden sind.

Zu den ungelösten Problemen gehört die hier untersuchte und sehr häufig vorkommende Anordnung eines Spannfeldes mit Seilleitern (langes Spannfeld), die als Zweifach-Bündel ausgeführt und mit Abstandshaltern versehen sind, wodurch zusätzlich zu den bekannten Kräften durch das Ausschwingen und Rückfallen der Bündelleiter noch die Kräfte durch das Zusammenziehen der Einzelleiter des Bündel hinzukommen.

Zur Verdeutlichung des Problems und des gegenwärtigen Standes dient die Prinzipdarstellung in Bild 3.1, das den qualitativen Verlauf des Seilzuges in einem horizontalen Spannfeld bei Kurzschluss zeigt. Wie zu erkennen ist, treten insgesamt drei Maxima auf: das Kontraktions-, das Ausschwing- und das (Leiter-)Fallmaximum. Welches dieser Maxima dem Betrage nach am größten und damit maßgebend für die Bemessung der Anlage ist, ist abhängig von den einer Reihe von Parametern. Bei weitem Teilleiterabstand dominiert häufig das Kontraktionsmaximum, das – wie Bild 3.1 verdeutlicht, nur sehr kurzzeitig auftritt.

Bild 3.1: Seilzug in einem horizontalen Spannfeld bei Kurzschluss

Generell liegen der Normung einfache physikalische Modelle zugrunde, z.B. das Pendelmodell für gespannte Leiterseile. Diese Modelle benötigen experimentell gewonnene Daten zum einen für eine optimierte Parametrierung des physikalischen Modells selbst und zum anderen zur Verifikation der mit diesem Modell gewonnenen Ergebnisse

2. Neben den Berechnungen mit einfachen physikalischen Modellen erlauben Großrechenprogramme auf der Basis der Finite-Elemente-Methode (FEM) insbesondere bei Anordnungen hoher Komplexität eine wesentlich detailliertere Untersuchung der mechanischen Probleme bei elektrodynamischen Anregungen. Diese Großrechenprogramme sind universell einsetzbar, bedürfen jedoch erheblicher theoretischer und praktischer Kenntnisse und Erfahrungen, um mit diesem Verfahren sinnvoll zu arbeiten.

Auch bei der Anwendung von Großrechenprogrammen ist die Bereitstellung von Kontrolldatensätzen aus anlagentypischen Versuchen und die Verifikation von Ergebnissen durch realitätsnahe Kurzschlussversuche unerlässlich.

Obwohl sich die Versuchsergebnisse aufgrund der notwendigen Beschränkungen durch die gewählte Versuchsanordnung der unmittelbaren praktischen Anwendung entziehen, erlauben sie dennoch, bestehende Modelle so zu ergänzen, dass eine Anwendbarkeit auf beliebige reale Ausführungsfälle ermöglicht wird.

3.2 Forschungsziele und Lösungsweg

Der erweiterte DKE-Arbeitskreis "Kurzschlussversuche" hat nach Erörterung des Stands der Technik und der Interessenlage hinsichtlich eines von Anlagenplanern, Anlagenerrichtern, Armaturenherstellern und teilweise auch Leitungsbau-Unternehmen dieses Forschungsvorhaben vorgeschlagen, das die Kurzschlusswirkungen bei Bündelleitern mit Normalabständen der Teilleiter untersuchen soll. Die Ergebnisse des beschriebenen Projekts sollen die zuständigen Gremien durch die theoretischen Aufbereitungsarbeiten in den bekannten Lehrstühlen der Universitäten Erlangen, Karlsruhe und Lüttich in die Lage versetzen, die fehlenden Bemessungsregeln in das Normenwerk einzuführen. Sie schließen damit – wie oben ausgeführt – eine Lücke im internationale Normenwerk der IEC / EN 60865 –1.

Ein weiterer wichtiger Verwendungszweck der unmittelbaren Ergebnisse der Untersuchungen ist die Verifizierung bzw. Erweiterung von bereits vorhandenen Modellen auf der Grundlage der Finite-Element-Methode. Solche experimentell bestätigte Berechnungsverfahren würden es erlauben, zukünftig auch außergewöhnliche Aufbauten entsprechend der tatsächlich zu erwartenden dynamischen Belastung zu dimensionieren.

Im Rahmen des beschriebenen Projekts wurde ein experimentelles Versuchsprogramm durchgeführt, in welchem die mechanischen Wirkungen von Kurzschlussströmen in elektrischen Anlagen erfasst wurden. Diese sind:

- Beanspruchung der Leiterseile
- Ausschwingen mit Näherung/Berührung der Hauptleiter
- Näherung/Berührung der Teilleiter
- Beanspruchung der Feldabstandhalter
- Beanspruchung der Armaturen/Verbindungsmittel
- Beanspruchung der Isolatorketten
- Beanspruchung der Stahlbauten (Portale, Maste)
- Beanspruchung ihrer Fundamente

Das Versuchsprogramm trägt weitestgehend allen genannten Effekten und den konstruktiven Variationsmöglichkeiten in seinen Versuchsparametern und seinem Messprogramm Rechnung. Dennoch war eine volle experimentelle Abdeckung aller Variationsmöglichkeiten zu aufwändig. Die verbliebenen Lücken können mittels der durch die Experimentalergebnisse abgesicherten FEM-Parametervariations-Rechnungen geschlossen werden.

Das geplante Versuchsprogramm variiert die folgenden Parameter:

- Abspannhöhe (Federsteifigkeit und Eigenfrequenz der Abspann-Struktur) und
- Seilzugspannung,
- Teilleiterabstand,
- Zahl der Abstandshalter,
- Art der Abstandshalter,
- Phasenabstand,
- Kurzschlussstrom und
- Kurzschlussdauer.

4 Versuchsanordnung

4.1 Aufbau

Das Versuchsprogramm beinhaltete Versuche zur Ermittlung mechanischer Daten an originalgroßen, praxisüblichen Zweifach-Bündelleitern. Die prinzipielle Versuchsanordnung wird in Bild 4.1 gezeigt: Zwischen zwei Portalen in Metallgitter-Konstruktion war ein zweiphasiges Spannfeld in symmetrischer Außenleiteranordnung über eine Länge von 40 m (Portalmittenabstand) installiert. Die Einspeisung erfolgte am Portal Mitte, der Kurzschlussort befand sich am Ende des Spannfeldes am Portal Nord. Die weiteren gewählten Abmessungen wurden entsprechend den Spannungsebenen 100 kV und 400 kV variabel gewählt.

Variiert wurden ferner die Teilleiterabstände der Zweifach-Bündel sowie die Anzahl der eingesetzten Abstandshalter. Auch wurden die Höhe der Abspannpunkte des Spannfeldes (Traversenhöhe) sowie der Phasenabstand der Bündelleiter verändert.

Bild 4.1: Prinzipielle Versuchsanordnung

4.1.1 100-kV-Anordnung

Bild 4.2 zeigt die Versuchsanordnung für die 100-kV-Variante. Im Vordergrund ist das Portal Mitte mit Einspeisung, im Hintergrund das Portal Nord mit dem Kurzschluss zu erkennen. Die Portalhöhe, d.h. der Abstand von der Traversenunterkante zum Boden, wurde auf 8,22 m, der Leiterbündel-Mittenabstand auf 2,0 m festgelegt. Die Seilzugspannung wurde so eingestellt, dass der maximale Durchhang der Leiterbündel (in der Mitte der Spannfeldlänge) auf 60 cm begrenzt wurde.

Bild 4.2: Versuchsanordnung (100 kV), Blick in nördlicher Richtung

Bild 4.3 gibt Details der Einspeisung, Bild 4.4 Details der Kurzschlussverbindung wieder. Die Isolation der Abspannung des Spannfeldes bestand bei den 100-kV-Anordnungen aus je einer Doppelkette mit je 7 Glaskappenisolatoren, Details hierzu sind aus Bild 4.5 für das Portal Mitte und aus Bild 4.6 für das Portal Nord zu ersehen.

Eine detaillierte Aufstellung der Maße und Gewichte der Ketten und Leiter sowie der Geometrien der Stromzuführungen und der Kurzschlussverbindungen, die für eine Nachbildung mit Großrechenprogrammen bekannt sein müssen, ist in der Tabelle A1 im Anhang gegeben.

Bild 4.3: Stromeinspeisung am Portal Mitte (100-kV-Anordnung)

Bild 4.4: Kurzschlussverbindung am Portal Nord (100-kV-Anordnung)

Bild 4.5: Abspannkette am Portal Mitte (100-kV-Anordnung)

Bild 4.6: Abspannkette am Portal Nord (100-kV-Anordnung)

4.1.2 400-kV-Anordnung

Bild 4.7 zeigt die Versuchsanordnung für die 400-kV-Variante. Am Aufbau der Einspeisestelle lässt sich recht gut die gegenüber der 100-kV-Anordnung (siehe Bild 4.2) erhöhte Portalhöhe erkennen. Der Abstand von der Traversenunterkante zum Boden betrug hier 11,22 m, der Leiterbündel-Mittenabstand wurde auf 3,0 m vergrößert. Die Seilzugspannung wurde so eingestellt, dass der maximale Durchhang der Leiterbündel (in der Mitte der Spannfeldlänge) auf 80 cm begrenzt wurde.

Bild 4.7: Versuchsanordnung (400 kV), Blick in nördlicher Richtung

Die Isolation der Abspannung des Spannfeldes bestand bei den 400-kV-Anordnungen aus je einer Doppelkette von je 24 Glaskappenisolatoren, Einzelheiten hierzu sind aus Bild 4.8 für das Portal Mitte und aus Bild 4.9 für das Portal Nord zu ersehen.

Eine detaillierte Aufstellung der Maße und Gewichte der Ketten und Leiter sowie der Geometrien der Stromzuführungen und der Kurzschlussverbindungen ist in der Tabelle 9.2 im Anhang gegeben.

Bild 4.8: Abspannketten am Portal Mitte (400-kV-Anordnung)

Bild 4.9: Abspannketten am Portal Nord (400-kV-Anordnung)

4.2 Messungen

Unter den Kurzschlusswirkungen an den untersuchten Anordnungen interessieren folgende Phänomene als Maximalwerte und in ihrem zeitlichen Verlauf:

- die vom Spannfeld durch Kontraktion der Teilleiter sowie durch das Ausschwingen und Rückfallen der Leiterbündel auf das Portal ausgeübten Kräfte,
- die daraus herrührenden Materialbeanspruchungen in den Gitterstäben des Abspannportals vom Bereich der Krafteinleitung bis zum Fundamenteintritt,
- die Beanspruchung der Abstandshalter und
- die Auslenkungen der Leiter des Spannfeldes.

Die benutzten Messstellen an und im Abspannportal Nord sind in Bild 4.10 für die 100-kV-Anordnung und in Bild 4.11 für die 400-kV-Anordnung mit ihrer Position und Bezeichnung eingetragen.

4.2.1 Messung der Portalkräfte

Die von den Leitern auf das Portal einwirkenden Kräfte wurden mittels thermisch vollständig kompensierter Kraftsensoren, also zur Messung statischer Belastungen geeigneter Aufnehmer, am Nordportal gemessen. Die Kraftsensoren messen eine Druckbelastung mit positivem Vorzeichen. Die Kräfte wurden gemessen

- am Übergang zwischen Leiterseil und Isolation (Bezeichnung KLWW, KLWO, KLOW und KLOO, wobei das erste W oder O für das westliche oder östliche Bündel und das zweite W oder O in dieser Bezeichnung für das westliche oder östliche Leiterseil des Bündelleiters stehen) und
- am Übergang Isolation/Portal (Bezeichnung KPWW, KPWO, KPOW und KPOO).

In Bild 4.10 (100-kV-Anordnung) bzw. Bild 4.11 (400-kV-Anordnung) ist die Lage der Messstellen gekennzeichnet, die Kraftaufnehmer sind auch in Bild 4.6 und Bild 4.9 links und rechts von den Abspannketten zu erkennen. Die aufgezeichneten Ausgangswerte der parallelen Messstellen in den Bündelleitern wurden für die Auswertungen zu einer Gesamtzeitfunktion addiert (KLW, KLO, KPW und KPO).

Bei Aufbauten im Freien ist eine Nullpunktstabilität der oben genannten Messmittel über längere Zeiten nicht realisierbar. Da jeweils nur der dynamische Anteil zu messen war, mussten alle Messungen auf die einwandfrei aufgenommenen statischen Vorlasten durch den statischen Seilzug bezogen werden.

Bild 4.10: Portal Nord (100 kV) - Maße und Messstellen

Bild 4.11: Portal Nord (400 kV) - Maße und Messstellen

4.2.2 Messung der inneren Portalbeanspruchungen

An den im Bild 4.10 bzw. Bild 4.11 bezeichneten 14 Stellen im Abspannportal Nord waren DMS-Messstellen zur Aufnahme der Materialdehnung in Stabmitte und möglichst im Stabquerschnittsschwerpunkt installiert. Diese Dehnungsmessstreifen maßen eine Materialdehnung mit positivem Vorzeichen.

Während FEM-Berechnungen außer zu den einwirkenden Kräften auch direkt zu den Materialbeanspruchungen in allen Bauteilen führen, betreibt die CIGRE eine Studie hinsichtlich sog. "ESL" (equivalent static load), also äquivalenter statischer Lasten [3]. Die ESL ist definiert als die statische Kraft, die am Kraftangriffspunkt angreifend die gleiche Materialbeanspruchung an einem bestimmten Punkt der Konstruktion hervorruft, wie sie durch den dynamischen Vorgang an dieser Stelle als Maximalwert der Zeitfunktion auftritt. Die ESL ist also ortsabhängig. Besonders interessant ist der Übergang von der Stahlkonstruktion zum Fundament. Als Quotient aus ESL und "maximaler dynamischer Belastung am Abspannpunkt" kann man dann einen ESL-Faktor bilden.

Da es sich um eine Relativmessung handelt, ist für die Bestimmung von ESL-Faktoren die Genauigkeit der Messung unerheblich. Diese ist nur wichtig für die FEM-Anwendung. Die verwendeten Einzel-DMS wurden zur Verhinderung von Beeinflussungen durch den Kurzschlussstrom örtlich zur Vollbrücke ergänzt. Diese Messpunkte wurden mit DMS 1 bis DMS 14 bezeichnet. Die Kalibrierung der zu den Messstellen zugehörigen Leitungen und Trägerfrequenzverstärker erfolgte mittels eines hochpräzisen Dehnungsnormals.

Zwischen dem Portalfuß und dem Fundament sind an den Eckstielen der Druckseite Zwischenstücke mit DMS fest installiert. Mit diesen Aufnehmern wurden die für die Fundamentauslegung wichtigen Kraftwirkungen MAFU 1 bis 4 gemessen, siehe hierzu auch Bild 4.10 bzw. Bild 4.11. Die Aufnehmer besitzen definierte Nennempfindlichkeiten und maßen eine Materialdehnung mit positivem Vorzeichen.

Auch bei diesen Messstellen kann der Nullpunkt nicht stabil gehalten werden, so dass allein der dynamische Anteil der Kurzschlussbeanspruchung gemessen wurde. Der statische Anteil kann bei Bedarf aus der ESL-Referenzkennlinie ermittelt werden.

4.2.3 Messung der Abstandshalterbeanspruchung

Um auch Aussagen über die Beanspruchung der eingesetzten Abstandshalter treffen zu können, wurden in der 400-kV-Versuchsanordnung bei 40 cm Teilleiterabstand Abstandshalter eingesetzt, die mit Dehnungsmessstreifen versehen waren (Bild 4.12). Die Dehnungsmessstreifen in den Abstandshaltern maßen eine Zugbelastung mit positivem Vorzeichen. Diese Messsignale wurden zusätzlich zu den sonst registrierten Messungen aufgezeichnet.

Bild 4.12: Abstandshalter 400 mm mit Dehnungsmessstreifen

4.2.4 Leiterauslenkungen

Zu den Kriterien der Kurzschlussfestigkeit bei Seilanlagen gehört, dass die maximalen Auslenkungen der Leiter in von den Errichtungsvorschriften festgelegten Grenzen bleiben. Von Bedeutung ist dies besonders für die Frage, ob diese nach Kurzunterbrechung bei automatischer Wiedereinschaltung so abgeklungen sind, dass bei der dann wieder vorhanden Betriebsspannung keine isolationsgefährdenden Näherungen mehr bestehen. Aber auch während des Kurzschlusses soll verhindert werden, dass eine zweite Fehlerstelle durch zu große Annäherungen der Phasenleiter untereinander oder gegen geerdete Anlagenteile entstehen kann.

Die Bewegungen der Leiter des Spannfeldes wurden mit einer Hochgeschwindigkeitskamera registriert, die die Auslenkungen aus axialer Richtung ohne Behinderung der Leiterbewegungen aufzuzeichnen gestattete. In der Mitte des Leiterseils wurden die beiden äußersten Leiter mit Markierungsscheiben versehen, um diese Punkte beim Betrachten der Videoaufnahmen eindeutig identifizieren zu können.

Diese Video-Aufnahmen liefern 500 Bilder pro Sekunde und geben die Auslenkung der Leiterseile wieder. Kopien der Video-Aufnahmen stehen zur Verfügung.

5 Versuchsprogramm

Das Versuchsprogramm kann in zwei Teile gegliedert werden:

- 1. Die Ermittlung der Steifigkeit und Eigenfrequenz der Portale. Sie dient dazu, die Nachvollziehbarkeit mittels Modellberechnungen zu ermöglichen.
- 2. Die Kurzschlussversuche. Zusätzlich zu den im vorangegangenen Abschnitt genannten Kräften waren hierfür die Zeitfunktionen aller elektrodynamischen Größen zu erfassen, die als zusätzliche Parameter für die gemessenen Kraftverläufe relevant sind. Bedingt durch die komplexe Anordnung und die Vielzahl der Parameter ergab sich hier eine große Anzahl möglicher Versuchsvarianten. Zur Begrenzung des Umfangs der experimentellen Versuche musste der Variantenumfang auf ein zu bewältigendes Maß beschränkt werden.

5.1 Ermittlung der Steifigkeit und Eigenfrequenz der Portale, ESL-Referenzmessung

Wie bereits erwähnt sind eigene statische Versuche notwendig, um die Federsteifigkeiten der Portale in beiden Traversenpositionen zu bestimmen. Bei den Portalgitter-Konstruktionen sind statische Belastungsversuche ebenfalls notwendig zur Ermittlung der elastischen Kennlinien der an den Gitterstäben des Abspannportals angebrachten Dehnungsmessstreifen als Referenzmessung für die Ermittlung der "Äquivalenten Last" ESL. Diese Messungen erfolgen durch Beaufschlagung der frei stehenden Portale an den jeweiligen zur Traversenposition gehörenden Kraftangriffspunkten der Abspannung mit einer Folge paarweise aufgebrachter, statischer Kraftbelastungen, um eine Kennlinie aufzunehmen.

Zu messen sind, neben den aufgebrachten Kräften selbst, die jeweiligen Auslenkungen an den Abspannpunkten mittels dort befestigter, über Theodolithen abzulesender Lineale (Messpunkte 2 und 3), die elastischen Materialdehnungen DMS 1 bis 14 an den Messpunkten im Portal sowie die Kraftreaktionen am Übergang zwischen Portal und Fundament MAFU 1 bis 4, siehe Bild 4.10 und Bild 4.11.

Die Messwerte für Auslenkung, Materialdehnung und Fundamentkraft werden über den entsprechenden Werten der am Portal angreifenden Kraft aufgetragen. Dann wird jeweils durch sie eine Ausgleichsgerade gelegt, deren Gleichungen und Korrelationkoeffizienten angegeben werden. Die Federsteifigkeit hängt, bei ansonsten unveränderter Konstruktion, vom Hebelarm ab, d.h. der Höhe der Abspanntraverse. Deshalb ergab sich bei der Ermittlung der mechanischen Kenndaten die Gelegenheit, für zwei Abspannhöhen die entsprechenden Werte zu ermitteln und zur Erweiterung des diesbezüglichen Kenntnisstandes beizutragen.

Die Eigenschwingung der Portale wurde für die jeweiligen Traversenpositionen mittels eines mechanischen Schwingerregers (rotierende Unwucht) in Traversenmitte in Höhe Mitte Untergurt angeregt, und am Portal Nord mittels vorhandener DMS, am Portal Mitte mittels eines Schwingungsaufnehmers gemessen. Die Eigenfrequenzwerte wurden ausgewertet.

Entsprechend den Abspannhöhen 8,22 m für ein 100-kV- und 11,22 m für ein 400-kV-Spannfeld musste das Versuchsprogramm die Eigenfrequenzmessungen und die statischen Belastungsversuche an den genannten zwei Portalvarianten vorsehen.

5.2 Kurzschlussversuche

In diesem Teil der Untersuchungen wurden für alle mechanischen Versuchsvarianten des Versuchsprogramms Kurzschlussversuche mit 20 kA, 28 kA und 40 kA Stromhöhe und jeweils 0,1 s, 0,2 s und 0,3 s Stromflussdauer durchgeführt, der komplette Umfang der durchgeführten Versuche kann aus Tabelle 5.1 entnommen werden.

Die Versuche mit einem Teilleiterabstand von 0 cm dienten als Referenzmessungen, die sowohl in der 100-kV- als auch in der 400-kV-Anordnung mit 60 cm und 80 cm Durchhang durchgeführt wurden. Hierbei wurden die Leiterseile der Bündel in ca. 1,5 m Enfernung von den Abspannklemmen mit Seilklemmen zu einem engen Bündel zusammengefasst und mit drei weiteren gleichmäßig über das Spannfeld verteilten Seilklemmen zusammengehalten. In der 100-kV-Anordnung wurden bei einem Teilleiterabstand von 33 cm zwei zusätzliche Versuchsreihen durchgeführt, bei denen statt der sonst verwendeten starren Abstandshalter solche eingesetzt wurden, die eine parallele Verschiebung der Leiterseile gegeneinander zuließen. Der Durchhang des Spannfeldes wurde - abgesehen von jeweils einem Referenz-Versuch - innerhalb der 100-kV- und 400-kV-Variante konstant gehalten.

Die Messungen der bis zu 28 einzelnen Messgrößen wurden auf Transienten-Rekorder in ihrem zeitlichen Verlauf registriert und liegen in digitaler Form auf CD gespeichert vor.

100-kV-Anordnu	ing	Portalhöhe: 8,22 m	Bündelmittenabstand: 2 m	
Teilleiterabstand in cm	Durchhang in cm	Anzahl der Abstandshalter	Stromstärke I _k (effektiv) in kA	Kurzschluss- dauer T _k in s
0	60 / 80	5 ^{*)}	20 / 28 / 40	0,1 / 0,2 / 0,3
10	60	0 / 1 / 2	20 / 28 / 40	0,1 / 0,2 / 0,3
20	60	0 / 1 / 2	20 / 28 / 40	0,1 / 0,2 / 0,3
33	60	0 / 1 / 2	20 / 28 / 40	0,1 / 0,2 / 0,3
33	60	1 / 2 teilbeweglich	20 / 28 / 40	0,1 / 0,2 / 0,3
400-kV-Anordnu	ing	Portalhöhe: 11,22 m	Bündelmittenabstand: 3 m	
Teilleiterabstand	Durchhang	Anzahl der	Stromstärke I _k	Kurzschluss-
in cm	in cm	Abstandshalter	(effektiv) in kA	dauer T_k in s
0	60 / 80	5 ^{*)}	20 / 28 / 40	0,1 / 0,2 / 0,3
20	80	0 / 1 / 2	20 / 28 / 40	0,1 / 0,2 / 0,3
40	80	0 / 1 / 2	20 / 28 / 40	0,1 / 0,2 / 0,3

Tabelle 5.1: Durchgeführte Kurzschlussversuche

^{*)} Seilklemmen zum Zusammenfassen der Bündel

Neben den charakterisierenden Werten des Kurzschlussstroms,

- dem Stoßstrom i_p,
- dem Dauerkurzschlussstrom I_k,
- der Kurzschlussdauer T_k und
- der Zeitkonstante des abklingenden Gleichstromanteils τ

wurden die unter Abschnitt 4.2 aufgeführten Gruppen von Messdaten aufgezeichnet, nach Höchstwerten ausgewertet und in Excel-Tabellen aufbereitet.

Bei gleichbleibendem Abstand der aufeinander wirkenden Leiter ist die durch den Strom hervorgerufene Kraft proportional dem Quadrat der Stromstärke. Mit den gewählten Werten des Kurzschlussstroms von 20, 28 und 40 kA wird somit je Versuchsvariante ein Anregeverhältnis 1 : 2 : 4 überstrichen. Während jedoch der Anregestrom definiert ist, ist der Leiterabstand infolge der während des Kurzschlussvorganges auseinander getriebenen Leiter zeitlich veränderlich. Die genannten Verhältniszahlen gelten deshalb exakt nur für den Anfangszustand.

Da das für die Versuche benutzte Labor ausschließlich aus dem Hochspannungsnetz gespeist wird, handelte es sich bei allen hier beschriebenen Kurzschlussversuchen um generatorferne Kurzschlüsse. Der Effektivwert des Kurzschlussstromes ist deshalb über die Kurzschlussdauer unverändert, der Anfangskurzschlusswechselstrom $I_k^{"}$ ist gleich dem gemessenen Dauerkurzschlussstrom I_{k.}

Die Zuschaltung erfolgte generell im Nulldurchgang der Spannung; der erreichte Stoßfaktor, d.h. das Verhältnis i_p/I_k, betrug bei allen Versuchen 2,5. Dies entspricht dem allgemein in den für Hochspannungsanlagen geltenden Normen geforderten Wert.

Die Kurzschlusswirkungen hängen hinsichtlich Beanspruchung und Auslenkung von der Anregedauer, d.h. von der Kurzschlussdauer ab. Aus diesem Grund wurde die Untersuchung mit den unterschiedlichen Werten der Kurzschlussdauer nach Tabelle 5.1 durchgeführt.

6 Versuchsergebnisse

In diesem Abschnitt werden die Ergebnisse der experimentellen Versuche systematisch vorgestellt und an ausgewählten Beispielen exemplarisch erläutert. Dem Anliegen, eine Weiterbearbeitung der Messwerte in Richtung auf normungsfähige Berechnungsverfahren für Freiluftschaltanlagen mit Leiterseilen und Schlaufen zu ermöglichen, wird durch eine vollständigen Ergebnisdarstellung im Anhang sowie durch die Bereitstellung von Datenund Filmmaterial an die hiermit beschäftigten Institutionen Rechnung getragen:

- Die Auswertungstabellen sind diesem Bericht vollständig beigefügt. Es handelt sich um Excel-Tabellen, die auf mögliche weitere Auswertungen aus den zur Verfügung gestellten Oszillogrammen angelegt sind, und die ebenfalls auf CD zur Verfügung gestellt werden können.
- Alle Oszillogramme der Kurzschlussversuche liegen digital vor und können auf PC-lesbaren CDs zur Verfügung gestellt werden. Diesem Bericht sind je ein vollständiger Oszillogrammsatz aus den Versuchsvarianten LV 501-02/161 (400-kV-Anordnung, enge Bündel mit 5 Seilklemmen, 40 kA/0,3 s), und LV 501-02/217 (400-kV-Anordnung, 40 cm Teilleiterabstand mit 2 Abstandshaltern, 40 kA / 0,3 s) exemplarisch beigefügt.
- Ebenso liegen Zusammenstellungen von Maßen und Gewichten z.B. der Abspannkonstruktionen und der Anschlussschlaufen vor.

Im nachfolgenden Abschnitt 6.1 werden zunächst die Ergebnisse im Hinblick auf mechanische Kenndaten und Kennlinien und in den Abschnitten 6.2 und 6.3 dann die Ergebnisse der eigentlichen Kurzschlussuntersuchungen behandelt.

6.1 Mechanische Kenndaten

Dieser Teil der Untersuchungen beinhaltete die Aufnahme der Steifigkeitskennlinie der Portale, die ESL-Referenzmessungen in den Portalen und am Übergang zwischen Portal und Fundament sowie die Eigenfrequenzmessung der Portale. Bei den letztgenannten Messungen waren die Portale jeweils in ihren beiden Ausführungen der Traversenhöhe zu untersuchen.

Außerdem wurden die Eigenfrequenzen und Federsteifigkeiten der Eckstützpunkte der unteren Leiterebene aufgenommen.

6.1.1 Portalfedersteifigkeit, ESL-Referenzmessung

Die in jeweils einem Versuchstermin gleichzeitig durchgeführten Messungen der Portalsteifigkeiten und der ESL-Referenzwerte wurden nach ihrer Auswertung in Excel-Tabellen gespeichert und können auf Diskette zur Verfügung gestellt werden. Die ausgedruckten Tabellen und die graphischen Darstellungen der Feder- und der ESL-Referenz-Kennlinien sind diesem Bericht beigefügt. Die Darstellungen enthalten die Gleichungen der Ausgleichsgeraden mit dem jeweils zugehörigen Korrelationskoeffizienten.

Abhängig von den Geometrien der Versuchsanordnungen wurde gemessen

Abspannhöhe 8,22 m, Bündelleitermittenabstand a = 2 m:

 S_{Nord} = 1,229 kN/mm S_{Mitte} = 1,551 kN/mm

Abspannhöhe 11,22 m, Bündelleitermittenabstand a = 3 m:

S_{Nord} = 1,086 kN/mm S_{Mitte} = 1,223 kN/mm

Für Berechnungen nach VDE 0103 sind die resultierenden Federsteifigkeiten der Abspannpunkte anzuwenden. Diese ergeben sich für die Anordnung zweier paralleler Portale aus den reziproken Werten, d.h. gemäß der Gleichung $\frac{1}{S_{res}} = \frac{1}{S_{Nord}} + \frac{1}{S_{Süd}}$.

Es berechnen sich die resultierenden Federsteifigkeiten somit zu

S_{res,100kV} = 0,686 kN/mm S_{res,400kV} = 0,575 kN/mm

Wie zu erkennen ist, erwirkt die höhere Traverse durch die Vergrößerung des Hebelarmes eine deutliche Verringerung der Steifigkeit.

6.1.2 Eigenfrequenzen

Die Eigenfrequenz des in der Mitte der Traverse, also im Bereich der Abspannpunkte, mittels Schwingungserreger angeregten Portals wurden mit folgenden Werten gemessen:

Abspannhöhe 8,22 m, Bündelleitermittenabstand a = 2 m:

 $f_{Nord} = 8,3 Hz$ $f_{Mitte} = 9,0 Hz$

Abspannhöhe 11,22 m, Bündelleitermittenabstand a = 3 m:

 $f_{Nord} = 9,1 Hz$ $f_{Mitte} = 9,5 Hz$

Wie aus den während der Kurzschlussversuche mit den MAFU-Messstellen gemessenen praktisch freien Schwingungen des Portals Nord hervorgeht, beziehen sich die aufgenommenen Frequenzen auf die Abspanntraversen in den genannten Montagepositionen und nicht auf die Grundfrequenz des gesamten Portals (ca. 3,4 Hz).

6.2 Kurzschlusskräfte

6.2.1 Portalkräfte

Für die Auswertung der Portalkräfte wurden bei allen Versuchen die Signale der zwischen den Abspannketten und dem Portal parallel eingesetzten Kraftmessdosen KPWW und KPWO sowie KPOW und KPOO zu den zwei neuen Messgrößen KPW und KPO im Zeitbereich addiert. Diese geben den jeweiligen gesamten Seilzug bzw. die jeweils vom westlichen und östlichen Bündelleiter auf die Portale ausgeübte Gesamtkraft wieder.

Für diese beiden Messgrößen wurde dann die Auswertung der Maximalwerte getrennt nach dem Zeitpunkt ihres Auftretens, d.h. für die Bündelkontraktion, das Ausschwingen und den Leiterfall vorgenommen. Dieses für die letzteren beiden Belastungen von VDE 0103 vorgegebene Prinzip soll es auch ermöglichen, bei ESL-Betrachtungen entsprechend diesen Phasen der Leiterbewegung zu differenzieren.

6.2.1.1 Exemplarische zeitliche Verläufe

Das Verhalten der Bündelleiter beim Kurzschluss und die dabei auf das Portal wirkenden Kräfte seien am Beispiel zweier Versuche in der 400-kV-Anordnung beschrieben. In Bild 6.1 ist oben zunächst der Verlauf des Kurzschlussstromes über der Zeit zu sehen. Darunter sind die zeitlichen Verläufe der Portalkräfte von zwei unterschiedlichen Versuchen, jeweils ausgeübt vom östlichen Bündelleiter, aufgetragen. Beim ersten Versuch (LV 501-02/161) wurde das enge Bündel mit ca. 1 cm (nominell "0 cm") Teilleiterabstand eingesetzt, beim zweiten Versuch (LV 501-02/217) hatte das Bündel einen Teilleiterabstand von 40 cm und war mit zwei Abstandshaltern bestückt. Für diese Darstellung wurden die gemessene Signale mit einem 5-Hz-Tiefpassfilter aufbereitet.

Kontraktionsmaximum

Zu Beginn des Kurzschlusses werden die Teilleiter eines Bündels durch das Magnetfeld des parallel fließenden Stroms aneinander gepresst. Diese Bündelkontraktion geschieht - abhängig von der Höhe des Stroms und dem Abstand der Bündelleiter - im Zeitbereich unter 0,1 s und endet mit dem Abschalten des Stromes. Durch die Kontraktion der Seile wird die freie Seillänge verkürzt und eine Kraft auf die Aufhängungen im Portal ausgeübt.

Das Kontraktionsmaximum ist in Versuch 161 nur als kleiner Zacken im zeitlichen Verlauf bei ca. 40 ms zu erkennen. Die Verkürzung der Seillänge und damit die auf das Portal ausgeübte Kraft ist umso größer, je weiter der Teilleiterabstand und je höher die Zahl der im Spannfeld eingesetzten Abstandshalter ist. Während das Kontraktionsmaximum beim Versuch 161 nur aus dem Zusammenschlagen der lose nebeneinander liegenden Teilleiter herrührt, hat es beim Versuch 217 mit 40 cm Teileiterabstand und zwei Abstandshaltern deshalb einen Wert, der mit 43,9 kN das bestimmende der betrachteten Kraftmaxima ist. Durch diese stoßartige Anregung gerät die gesamte Versuchsanordnung in Schwingungen, die den weiteren Kraftverlauf deutlich beeinflussen.

Bild 6.1: Vergleich der vom östlichen Leiterbündelende auf das Portal ausgeübte Kräfte bei zwei verschiedenen Versuchen
 LV 501-02/161: 400-kV-Anordnung, 80 cm Durchhang, enges Bündel
 LV 501-02/217: 400-kV-Anordnung, 80 cm Durchhang,
 40 cm Teilleiterabstand,2 Abstandshalter

Ausschwingmaximum

Mit Stromflussbeginn beginnt der in den beiden Bündeln entgegengesetzt fließende Strom die Bündel nach außen auseinanderzutreiben. Die Beschleunigung, mit der die Bündel auseinandergetrieben werden, ist abhängig von der Stromhöhe und um so größer, je kleiner der Phasenabstand der Bündel ist. Der Zeitpunkt, zu dem die Bündel ihren maximalen Abstand erreichen und somit die größte Kraft auf das Portal ausüben, ist wiederum abhängig von der eben erwähnten Beschleunigung, den bewegten Massen, der Dauer des Stromflusses und dem Leiterseildurchhang und liegt im Zeitbereich von ca. 0,2 bis 0,3 s. Bei Versuch 161 tritt ein ausgeprägtes Ausschwingmaximum nach ca. 0,3 s auf und erreicht einen Wert von 29,2 kN. Hingegen reduziert sich dieses "Maximum" bei Versuch 217 auf eine kurze (Doppel-)Spitze bei ca. 0,25 s, die noch erheblich durch die vom Kontraktionsmaximum angeregten hochfrequenten Schwingungen überlagert ist.

Leiterfallmaximum

Nach Stromflussende werden die Bündel durch die aufgebaute Federspannung wieder nach innen beschleunigt, steigen dabei aufgrund ihrer Trägheit zunächst noch weiter nach oben auf und fallen dann innen wieder nach unten. Die durch das Rückschwingen der Leiterseile in Verbindung mit ihrem Fall nach unten erzeugte Kraft auf das Portal wird als Leiterfallmaximum bezeichnet. Es tritt bei Versuch 161 ca.1.05 s nach Stromflussbeginn auf und ist mit 34,2 kN das bestimmende der drei betrachteten Maxima. Bei Versuch 217 tritt es schon ca. 0,9 s nach Stromflussbeginn auf und erreicht, noch immer durch oben genannte Schwingungen überlagert, 40,0 kN.

Nachdem die vom ausgeprägten Kontraktionsmaximum in Versuch 217 ausgelösten Schwingungen abgeklungen sind (nach ca. 1,2 s), ähneln sich die Verläufe beider Kräfte wieder. Dabei tritt in beiden Verläufen die wirksame Eigenfrequenz der Portalanordnung von etwa 3,3 Hz allmählich stärker in Erscheinung.

6.2.1.2 Ergebnisübersicht

Die ausführlichen Messergebnisse für die 100-kV-Anordnung sind in Bild 9.11 bis Bild 9.25 im Anhang und für die 400-kV-Anordnung in Bild 9.26 bis Bild 9.34 im Anhang grafisch zusammengefasst. Von den Messwerten KPW und KPO wurden aus Gründen der Übersichtlichkeit die vor dem Kurzschluss vorhandenen statischen Seilzugkräfte abgezogen und nur die dynamischen Anteile der auf das Portal wirkenden Kräfte wiedergegeben. Diese statischen Anteile lagen bei 15 kN in der 100-kV-Anordnung und bei 17 kN in der 400-kV-Anordnung. Dargestellt sind die auf das Portal wirkenden Kurzschlusskräfte bei einer Kurzschlussdauer von $T_{k} = 0,1$ s, 0,2s und 0,3 s bei Kurzschlussströmen von 20, 28 und 40 kA und 0 bis 2 Abstandshaltern im Leiterbündel. Bei den Versuchen mit dem engen Bündel ersetzt der unterschiedliche Leiterseildurchhang die Zahl der Abstandshalter als Parameter. Als Punkte sind die Maxima der Messwerte KPW und KPO in die Diagramme eingetragen. Die Mittelwerte dieser Kräfte wurden durch eine Linie miteinander verbunden, um den Trend der Messwerte besser sichtbar zu machen. Das bedeutet jedoch nicht, dass der tatsächliche Verlauf dieser Kurve zwischen den Messpunkten bekannt wäre.

Für jeden der untersuchten Teilleiterabstände in beiden Versuchsanordnungen finden sich auf einer Seite übereinander drei Diagramme. Das erste Bild auf jeder Seite zeigt die Kräfte, die durch die Kontraktion der Bündelleiter am Anfang des Kurzschlusses im Zeitbereich bis ca. 0,1 s nach Stromflussbeginn auf das Portal ausgeübt werden. Im zweiten

Bild sind die Kräfte dargestellt, die durch Ausschwingen der Leiterseile gegen Ende des Sromflusses (ca. 0,2 bis 0,4 s nach Stromflussbeginn) bewirkt werden, und im untersten Bild dann die Kräfte, die danach vom Rückfall der Leiterseile nach Beendigung des Stromflusses herrühren.

Bei der Betrachtung der Messergebnisse müssen folgende Sonderfälle beachtet werden: Bei den Versuchen 50102146 und 50102215 rutschte die Stahlseele des westlichen bzw. östlichen Leiterseils des westlichen Bündels aus ihrer Verschraubung in der Abspannklemme am Portal Mitte. Die dadurch entstandene Verlängerung des freien Leiterseils zwischen den Abspannklemmen konnte anschließend nicht mehr vollständig mit den Spannschlössern ausgeglichen werden, aus Zeitgründen war auch eine neue Fassung des Seils nicht möglich. Bei den folgenden Versuchen 50102147 und ...148 bzw. 50102216 bis ...223 hatte das westliche Bündel deswegen einen etwas größeren Durchhang als bei den übrigen Versuchen. Der Unterschied im Durchhang zwischen dem westlichen und dem östlichen Bündel macht sich hauptsächlich dadurch bemerkbar, dass bei hohen Strömen die Maximalwerte der Kräfte deutlicher voneinander abweichen als sonst üblich.

Kontraktionsmaximum

Die Kontraktionskräfte F_{pi} sind bei den hier benutzten Stromflussdauern im Idealfall und in der Regel auch bei den praktischen Messungen unabhängig von der Dauer des Kurzschlusses. Sie variieren dafür mit der Stromhöhe, der Anzahl der eingesetzten Abstandshalter und dem Teilleiterabstand.

Schon bei Verwendung des engen Bündels mit einem tatsächlichen Teilleiterabstand von ca. 1 cm sind, wohl bedingt durch die hohe Zahl von fünf Seilklemmen, die das Bündel zusammenhielten, geringe Kontraktionskräfte bis ca. 10 kN messbar, die aber den folgenden zeitlichen Verlauf der einzelnen Versuche nicht beeinflussen. Bei einem Teilleiterabstand von 10 cm liegen die gemessenen Kontraktionskräfte für alle Anordnungen in einem relativ schmalen Band unter 10 kN und spielen gegenüber den durch das Ausschwingen verursachten Kräften keine große Rolle. Nur bei kleinen Strömen mit einer Dauer von 0,1 s sind die Kontraktionskräfte etwas größer als die durch das Ausschwingen verursachten Kräfte.

Bei 20 cm Teilleiterabstand ändert sich das Bild etwas. Sowohl in der 100-kV- als auch in der 400-kV-Anordnung gibt es unter 15 kN auch hier ein Band, in dem der Großteil der Messwerte liegt. Zwei Versuchsanordnungen fallen allerdings deutlich aus diesem Band heraus: bei Strömen von 40 kA und einem oder zwei Abstandshaltern im Leitungszug liegen die gemessenen Kräfte im Bereich von 20 bis 30 kN und sind zumindest in der 400-kV-Anordnung damit auch deutlich höher als die durch das Ausschwingen verursachten Kräfte. Weiterhin fällt auf, dass - abhängig von der Zahl der eingesetzten Abstandshalter - die Kräfte der Messreihen mit Strömen von 20 und 28 kA in etwa die gleiche Größe haben, während die 40-kA-Messreihen um einiges über diesen Werten liegen.

Obwohl die höchsten Werte der Kontraktionsmaxima bei 33 cm Teilleiterabstand mit 25 bis 30 kN kaum größer sind als die Werte bei 20 cm, sind die Messreihen doch viel gleichmäßiger verteilt. Die Unterschiede zwischen den 20-kA- und 28-kA-Messreihen haben die gleiche Größenordnung wie die zwischen den 28-kA- und 40-kA-Messreihen und auch die Abstufungen zwischen den Messreihen mit verschiedenen Abstandshaltern sind deutlich zu erkennen.

Auch bei 40 cm Teilleiterabstand sind die Messreihen so gleichmäßig verteilt wie bei 33 cm, die höchsten gemessenen Kontraktionsmaxima liegen mit bis zu 40 kN jedoch merklich höher, wie Bild 6.2 zeigt.

Bild 6.2: Durch Kontraktion der Bündelleiter von den Leiterseilen auf das Portal ausgeübte Kräfte F_{pi} bei der 400-kV-Anordnung, 40 cm Teilleiterabstand (Punkte: Messwerte, Linien: Mittelwerte, siehe auch Bild 9.32)

Bei den 3 Messreihen mit zwei Abstandshaltern kann man hier auch die Auswirkungen des oben erwähnten Fehlers in einer der Abspannklemmen des westlichen Bündels erkennen. Bei 40 kA Strom und 0,1 s Stromflussdauer liegen die Messwerte der beiden Bündel noch eng beieinander. Die restlichen Messungen mit 40, 28 und 20 kA zeigen dann schon deutliche Unterschiede zwischen den beiden Bündeln. Da die Kontraktionsmaxima unabhängig von der Stromfussdauer sein sollten, dürfte der in Bild 6.2 eingezeichnete Mittelwert in etwa dem Verlauf bei einer ungestörten Messung entsprechen.

Ausschwingmaxima

Im Gegensatz zu den Kontraktionskräften, die nicht von der Geometrie des Versuchsaufbaus sondern nur von den Teilleiterabständen abhängen, zeigen sich bei den durch das Ausschwingen der Leiterseile bewirkten Kräfte F_t deutliche Unterschiede zwischen 100-kV- und 400-kV-Anordnung. Dafür sind sie - bei gleichem Versuchsaufbau – zumindest bis zu einem Teilleiterabstand von 33 cm weitgehend unabhängig von der Zahl der eingesetzten Abstandshalter und somit hauptsächlich abhängig von Stromhöhe und Stromflussdauer. In der 100-kV-Anordnung wurden generell höhere Ausschwingmaxima gemessen als in der 400-kV-Anordnung. Diese Tatsache lässt sich hauptsächlich dadurch erklären, dass die beiden Bündelleiter in der 100-kV-Anordnung nur 2 m statt 3 m Phasenabstand hatten und sich der Einfluss des Nachbarbündels - der ja erst des Ausschwingen der Leiterseile bewirkt - in dieser Anordnung deutlich stärker auswirkt. Dieser Effekt wird dadurch noch verstärkt, dass der geringere Durchhang in der 100-kV-Anordnung den maximalen Abstand der Bündelleiter in ausgeschwungenem Zustand gegenüber der 400-kV-Anordnung weiter einschränkt. Bild 6.3, in dem die Ausschwingmaxima bei unterschiedlichen Durchhängen dargestellt sind, zeigt dies deutlich: die beim geringeren Durchhang gemessenen Kraftmaxima sind stets etwas größer.

Bild 6.3: Durch Ausschwingen der Bündelleiter von den Leiterseilen auf das Portal ausgeübte Kräfte F_t bei der 100-kV-Anordnung und enger Bündelung, Vergleich bei unterschiedlichem Durchhang (siehe auch Bild 9.12)

Bei 10 cm Teilleiterabstand in der 100-kV-Anordnung sind die maximalen Ausschwingkräfte praktisch unabhängig von der Zahl der eingesetzten Abstandshalter, ein Zeichen dafür, dass Kontraktion bei diesem Abstand keine Rolle spielt. Die Maxima sind bei einem Spitzenwert von ca. 30 kN geringfügig kleiner als bei der vergleichbaren engen Bündelung, die mechanisch beweglicher ist und ungedämpfter ausschwingen kann. Die Kurvenverläufe bei 20 cm Teilleiterabstand in der 100-kV-Anordnung sind denen bei 10 cm Teilleiterabstand in Form und Höhe sehr ähnlich, allerdings zeigt sich hier schon, dass die Messwerte mit steigender Abstandshalterzahl leicht ansteigen. In der 400-kV-Anordnung ist die Abhängigkeit der Maxima von der Zahl der Abstandshalter noch etwas klarer zu erkennen, die Maxima sind aufgrund des größeren Phasenabstandes nur etwa halb so hoch.

Die Art der eingesetzten Abstandshalter (starr oder teilbeweglich) macht bei den beiden Messreihen mir 33 cm Teilleiterabstand keinen sichtbaren Unterschied, nur beim Versuch mit zwei Abstandshaltern, 40 kA Stromstärke und 0,1 s Stromflussdauer liegt die Belastung durch die starren Abstandshalter höher. Bei diesem Versuch rutschte wie erwähnt die Stahlseele eines Leiter aus der Seilklemme. Die Höhe der Maxima entspricht in etwa denen bei 20 cm Teilleiterabstand, nur beim Versuch ganz ohne Abstandshalter macht sich der größere Teilleiterabstand und damit eine höhere Kontraktion in den Messwerten bemerkbar.

Ganz anders sehen die Messergebnisse bei 40 cm Teilleiterabstand in der 400-kV-Anordnung aus. Während die bisher besprochenen Messreihen der Ausschwingkräfte eher die Tendenz hatten bei längeren Stromflussdauern etwas nach unten abzuknicken, weil die Bündel schon vor Beendigung des Stromflusses ihre maximale Auslenkung erreichten und dann in dieser Endposition praktisch verharrten, finden sich hier bei den Messreihen mit zwei Abstandshaltern die höchsten Ausschwingmaxima bei den kürzesten Stromflussdauern. Mit Ausnahme der Messreihen ohne Abstandshalter haben alle anderen Kurvenverläufe ein Minimum bei 0,2 s Stromflussdauer.

Leiterfallmaxima

Die gemessenen Kräfte F_f beim Leiterfall zeigen in der 100-kV-Anordnung in etwa die gleiche Streuung wie die beim Ausschwingen gemessenen Kräfte, denn der Rückfall der Bündel ist zunächst einmal abhängig von ihrem vorherigen Ausschwingen. Beeinflusst wird der Rückfall allerdings auch von den mechanischen Gegebenheiten der jeweiligen Versuchsanordnung. Hierzu gehören zum einen die mechanische Beweglichkeit der Leiterbündel, die umso höher wird, je geringer der Teilleiterabstand und die Zahl der Abstandshalter ist, zum anderen spielt eine Rolle, wie weit das Rückschwingen der Leiterbündel mit ihrem Rückfall nach unten zeitlich übereinstimmt. Die mechanische Beweglichkeit bewirkt, dass die Rückschwingkräfte im Vergleich zu den Ausschwing-kräften bei höheren Strömen und Teilleiterabständen um 20 - 30% geringer ausfallen, wie ein Vergleich der in Bild 6.4 dargestellten roten Kurven (40kA) mit Bild 6.3 belegt.

Bild 6.4: Durch Rückfall der Bündelleiter von den Leiterseilen auf das Portal ausgeübte Kräfte F_f bei 100-kV-Anordnung und enger Bündelung, (siehe auch Bild 9.13)

In den Fällen, in denen die Rückschwingkräfte höher sind als die Ausschwingkräfte, was bei niedrigen Strömen häufiger der Fall ist, lässt sich dies durch eine Verstärkung der Rückschwingkraft durch ein zeitgleiches Rückfallen der Leiterbündel erklären. Bei der 400-kV-Anordnung mit anderen mechanischen Parametern liegen die Rückschwingkräfte insbesondere bei höheren Strömen und längeren Kurzschlussdauern hingegen bis zu maximal 30% über den Ausschwingkräften. Bedingt durch den größeren Durchhang können die Bündel hier beim Ausschwingen höher aufsteigen und damit auch kräftiger rückfallen als in der 100-kV-Anordnung.

6.2.2 Innere Portalbeanspruchung

Da die innere Portalbeanspruchungen - anders als bei den von Bündelleitern erzeugten Kräften - spezifisch für das bei den Versuchen verwendete Portal sind, können die im folgenden getroffenen Aussagen nicht unbedingt verallgemeinert werden.

6.2.2.1 Exemplarische zeitliche Verläufe

Die Belastung der Mastfüße beim Kurzschluss seien auch hier am Beispiel der beiden bereits genannten Versuche in der 400-kV-Anordnung erläutert. Beim ersten Versuch (LV 501-02/161) wurde das enge Bündel ohne Teilleiterabstand eingesetzt, beim zweiten Versuch (LV 501-02/217) hatte das Bündel einen Teilleiterabstand von 40 cm und war mit zwei Abstandshaltern bestückt. Bei den in Bild 6.5 dargestellten Kräften MAFUO handelt es sich jeweils um die Summe der im östlichen Mastfuß mit den Messstellen MAFU 1 und MAFU2 gemessenen Kräfte. Auch für diese Darstellung wurden die gemessenen Signale mit einem 5-Hz-Tiefpassfilter aufbereitet.

Bild 6.5: Vergleich der Kräfte am östlichen Mastfuß bei zwei verschiedenen Versuchen LV 501-02/161: 400-kV-Anordnung, 80 cm Durchhang, enges Bündel LV 501-02/217: 400-kV-Anordnung, 80 cm Durchhang, 40 cm Teilleiterabstand, zwei Abstandshalter

Bei den Auswertungen der Versuche ergaben sich Eigenfrequenzen der gesamten Versuchsanordnung von ca. 3,4 Hz bei der 100-kV-Anordnung und ca. 3,1 Hz bei der 400-kV-Anordnung. Wie ein Vergleich der Signalverläufe des Versuchs 161 in Bild 6.1 und Bild 6.5 zeigt, bedeutet das, dass das Portal in der Lage ist, den Bewegungen der Leiterbündel beim Aus- und Rückschwingen zu folgen. Bei Versuchen mit nur geringem Einfluss der Bündelkontraktion können sich daher den Maxima der Portalkräfte beim Ausschwingen und Rückfallen der Bündelleiter ebensolche Maxima in den Belastungen der Mastfüße des Portals eindeutig zuordnen lassen.

6.2.2.2 Probleme bei der Zuordnung von Kraftmaxima zum Kurvenverlauf

Anders sieht es hingegen aus, wenn der Kontraktionseinfluss deutlich höher ist als der Einfluss durch die Leiterseilbewegung, wie z.B. bei Versuch 217, Bild 6.5. In diesem Fall wird das Portal stoßartig angeregt und die resultierenden Belastungen in den Mastfüßen des Portals ergeben sich aus einem Gemisch der Eigenschwingungen des angeregten Portals und der weiterhin von außen einwirkenden Bündelbewegungen. Bei dem erwähnten Versuch führt dieses Verhalten dazu, dass zu einem Zeitpunkt, zu dem bei einem Versuch ohne Kontraktionseinfluss das Ausschwingmaximum auftritt (z.B. bei Versuch 161 nach ca. 0,3 s), hier die Belastung am Mastfuß fast Null ist.

Bei einer anderen Reihe von Versuchen mit gleicher Versuchsanordnung (100-kV-Anordnung, 20 cm Teilleiterabstand mit zwei Abstandshaltern) änderte sich das Verhalten der Mastfußbelastung nur durch Änderung von Stromhöhe und Stromflussdauer von 28 kA / 0,1 s auf 40 kA / 0,3 s von einer Belastung ähnlich Versuch LV 501-02/217 (Kontraktionsverhalten) über Zwischenformen zu einer Belastung ähnlich Versuch LV 501-02/161 (Ausschwingverhalten). Eine sichere Zuordnung der Kraftmaxima an den Leitungsbefestigungen zu den Kraftmaxima im Mastfuß ist bei Einfluss von Kontraktion deshalb nicht immer möglich.

6.2.2.3 Ergebnisübersicht

Auch bei der Auswertung der Mastfußbelastungen wurden bei allen Versuchen die beiden Signale der einzelnen Messstellen MAFU1 und MAFU2 sowie MAFU3 und MAFU4 zu den zwei neuen Messgrößen MAFUO und MAFUW im Zeitbereich addiert. Wegen der im voranstehenden Abschnitt beschriebenen Auswirkungen der Bündelkontraktion auf das Verhalten der Mastfußbelastungen und die daraus resultierenden Probleme bei der eindeutigen Zuordnung der Kraftmaxima wurden die an den Mastfüßen auftretenden Kräfte bei der grafischen Ergebnisdarstellung im Anhang in Bild 9.35 bis Bild 9.49 (100-kV-Anordnung) und Bild 9.50 bis Bild 9.58 (400-kV-Anordnung) etwas anders behandelt als die Portalkräfte. Das erste am Mastfuß gemessene Kraftmaximum im Zeitbereich bis ca. 0,4 s - egal ob es durch Bündelkontraktion oder durch das Ausschwingen der Leiterseile hervorgerufen wurde - wird, da es sich um eine direkte Auswirkung des fließenden Stroms handelt, als Kurzschlusskraftmaximum F_{KM} bezeichnet. Es ist im jeweils ersten Diagramm einer jeden Versuchsserie aufgetragen.

Nach Kurzschlussende schwingt das Portal mit der Grundfrequenz der jeweiligen Versuchsanordnung (100 kV: 3,4 Hz, 400 kV: 3,15 Hz) aus, wobei dieser Eigenschwingung immer noch Anregungen durch die sich bewegenden Leiterseile überlagert sind. In den zweiten und dritten Diagrammen jeder Serie sind die höchsten in diesem Zeitbereich aufgetretenen Zugbelastungen F_{ZM} und Druckbelastungen F_{DM} des Mastfußes eingetragen, wobei die Druckbelastung F_{DM} die gleiche Kraftrichtung aufweist wie das Kurzschlusskraftmaximum F_{KM} . Eine feste Reihenfolge des Auftretens von Zug- und Druckmaximum konnte nicht beobachtet werden. Dies rührt daher, das es sich bei den betrachteten Verläufen um Überlagerungen verschiedener Schwingungsvorgänge handelt. Da es sich bei den Zugmaxima um Kräfte handelt, die beim Rückschwingen des Portals gemessen wurden, sind sie fast immer kleiner als die Zugmaxima und werden hier nur der Vollständigkeit halber mit aufgeführt.

Die in den Mastfüßen gemessenen Kräfte sind analog zu den Portalkräften bei einer Kurzschlussdauer von T_k = 0,1 s, 0,2 s und 0,3 s bei Kurzschlussströmen von 20, 28 und 40 kA mit 0 bis 2 Abstandshaltern bzw. 60 und 80 cm Seildurchhang dargestellt. Als Punkte sind wiederum die Maxima der Messwerte MAFUO im östlichen Portalmast sowie MAFUW im westlichen Mast in die Diagramme eingetragen. Die Mittelwerte dieser Kräfte wurden auch hier durch eine Linie miteinander verbunden, um den Trend der Messwerte besser sichtbar zu machen.

Bedingt durch die Hebelwirkung des Portalmastes sind die an den Mastfüßen gemessenen Kräfte etwa eine Zehnerpotenz größer als die Portalkräfte. Bei den Versuchen mit den engen Bündeln - d.h. ohne Einfluss der Bündelkontraktion - unterscheiden sich die Kurvenverläufe der Ausschwingmaxima am Mastfuß von denen der Kontraktionsmaxima praktisch auch nur durch diesen Faktor, wie ein Vergleich von Bild 6.6 mit Bild 6.3 belegt. Die Portalbewegungen folgen also den durch die Bündelleiter ausgeübten Kräften.

Bild 6.6: Durch Ausschwingen der Bündelleiter hervorgerufene Kraftmaxima F_{KM} im Mastfuß bei der 100-kV-Anordnung und enger Bündelung (siehe auch Bild 9.35)

Ein ähnliches Bild der Kurvenverläufe zeigt sich auch noch bei 10 cm Teilleiterabstand in der 100-kV-Anordnung (Bild 9.38 bis Bild 9.40 im Anhang). Während hier bei den Ausschwingkräften die Anzahl der eingesetzten Abstandshalter keine Rolle spielt, kann man allerdings bei den Kurzschlusskraftmaxima bei höheren Strömen durchaus einen Einfluss der Abstandshalterzahl erkennen. Bemerkenswerterweise fallen dabei die Kontraktionsmaxima im Mastfuß umso höher aus, je weniger Abstandshalter eingesetzt waren. Auch bei 20 cm Teilleiterabstand in der 100-kV-Anordnung (Bild 9.41 bis Bild 9.43 im Anhang) tritt bei Kurzschlussströmen von 40 kA dieses Verhalten auf, während bei den kleineren Strömen der Verlauf der Kurzschlusskraftmaxima noch dem Verlauf der Ausschwingmaxima ähnelt.

Bei 20 cm Teilleiterabstand in der 400-kV-Anordnung (Bild 9.53 bis Bild 9.55 im Anhang) ist dieses Phänomen nur bei Strömen von 40 kA und Stromflussdauern von 0,3 s festzustellen. Da die Anregung des Portals durch die von den Leiterbündeln ausgeübten Kräfte sowohl bei den Kontraktionsmaxima als auch bei den Ausschwingmaxima mit steigender Abstandshalterzahl größer wurde oder zumindest gleich blieb, dürften die höheren Kräfte im Mastfuß bei kleinerer Abstandshalterzahl durch die bereits erwähnte Überlagerung verschiedener mechanischer Schwingungen im Versuchsaufbau entstanden sein. Bei 33 cm und insbesondere bei 40 cm Teilleiterabstand gibt es dann keinen klaren Zusammenhang mehr zwischen der Anregung durch Kontraktions- oder Ausschwingkräfte und den resultierenden Belastungen im Mastfuß. Bei 40 cm Teilleiterabstand deuten Größe und Verlauf der Kurzschlusskraftmaxima eher auf Auswirkungen der Bündel-kontraktion hin, bei 33 cm Teilleiterabstand scheint noch der Einfluss des Ausschwingens der Leiterseile zu überwiegen. Die höchsten gemessen Kurzschlusskraftmaxima hatten Werte von 350 kN bis knapp unter 400 kN.

Wie bereits erwähnt, lässt sich nur das Kurzschlusskraftmaximum der Kräfte im Mastfuß direkt auf die Auswirkungen des im Kurzschlussfalls fließenden Stroms zurückführen. Die danach gemessenen Zug- und Druckmaxima treten nach Ende des Kurzschlusses auf und sind ein Resultat des Zusammenspiels der anfänglichen Auslenkung des Portals (Kurzschlusskraftmaximum) und der verschiedenen Eigenschwingungen des Versuchsaufbaus. Je geringer dabei der Einfluss der Bündelkontraktion ist, umso deutlicher lässt sich der Einfluss des Kurzschlusskraftmaximums in den folgenden Zug- und Druckmaxima erkennen. In der 100-kV-Anordnung ist die Größe der Zugmaxima mit wenigen Ausnahmen bei kleinen Strömen - bedingt durch den Einfluss der Bündelkontraktion geringer als die Größe der entsprechenden Kurzschlusskraftmaxima. Das gleiche lässt sich über die Zugmaxima der 400-kV-Anordnung sagen, obwohl hier wegen des größeren Phasenabstands (und der damit verbundenen geringeren Auswirkungen des Ausschwingens der Leiterseile und des somit deutlicheren Kontraktionseinflusses) die Zugmaxima etwas häufiger über den Kurzschlusskraftmaxima liegen.

Bei den Druckmaxima machen sich zum einen die zusätzliche Beanspruchung durch das Rückfallen der Leiterseile und zum anderen die unterschiedliche Anregung des Portals bei zusätzlicher Bündelkontraktion ganz deutlich bemerkbar. Der Rückfall der Leiterseile bewirkt, dass auch bei Versuchen ohne nennenswerten oder mit kleinem Kontraktionseinfluss, wie es in der 100-kV-Anordnung beim Einsatz des engen Bündels und bei 10 cm oder 20 cm Teilleiterabstand der Fall ist, die Druckmaxima etwas größer sind als die Kurzschlusskraftmaxima. In der 400-kV-Anordnung mit dem größeren Phasenabstand und mit 11 m statt 8 m Portalhöhe sind bei den Versuchen ohne oder mit kleinem Kontraktionseinfluss und bei einer Höhe des Kurzschlussstroms von 40 kA dann die Druckmaxima zum Teil mit ca. 350 kN doppelt so groß wie die entsprechenden Kurzschlusskraftmaxima.

Die Versuche mit den großen Teilleiterabständen von 33 cm und 40 cm zeigen ein etwas abweichendes Bild. Bei höheren Strömen und längeren Stromflussdauern sind die Druckmaxima im allgemeinen höher als die Kurzschlusskraftmaxima (vgl. entsprechende Einträge in Bild 9.49 mit jenen in Bild 9.47 bzw. in Bild 9.58 mit jenen in Bild 9.56 im Anhang). Dass der Einfluss der verwendeten spezifischen Versuchsanordnung bei den Druck- und Zugmaxima eine bedeutende Rolle spielt zeigt sich auch darin, dass diese bei Stromflussdauern von 0,3 s häufig kleiner sind als bei Strömen mit 0,2 s Dauer, ein Effekt, der sich allein von den Kurzschlusskräften her nicht erklären lässt.

6.2.3 Kräfte in den Abstandshaltern

Bei den Kurzschlussversuchen mit der 400-kV-Anordnung und 40 cm Teilleiterabstand wurden Abstandshalter eingesetzt, die mit Dehnungsmessstreifen versehen waren, um die Kräfte in den Abstandshaltern zu messen. Vor der Auswertung wurden auch diese Messwerte mit einem digitalen 5-Hz-Tiefpassfilter behandelt. Bei diesen Messungen ergaben sich einige Probleme:

- Bei den Versuchen 50102209, ...212 und ...215 bis ...217 zeigte der eingesetzte Abstandshalter 1 im Vergleich zu Abstandshalter 2 Sprünge im steilsten Anstieg des Kraftverlaufes und kehrte nach Ende des Kurzschlusses nicht auf seine ursprünglichen Nullinie zurück (siehe Bild 9.10 im Anhang). Bei der Auswertung dieser Versuche wurde versucht, den Kurvenverlauf dieses Signals über einen Vergleich mit dem parallel gemessenen Kraftverlauf im Abstandshalter 2 sowie einen Vergleich der Nullinien innerhalb des Signalverlaufs möglichst genau zu rekonstruieren. Trotzdem können die mit dem Abstandshalter 1 gemessenen Kräfte bei diesen Versuchen fehlerbehaftet sein.
- Beim Versuch 50102214 war das ungefilterte Messsignal des Abstandshalters 2 stark verrauscht und zeigte im Vergleich zu Abstandshalter 1 einen untypischen Kurvenverlauf (siehe Bild 9.9 im Anhang). Der ausgewertete Maximalwert der Kraft im Abstandshalter erscheint zu klein und deutet auf eine Fehlmessung hin.

Bild 9.59 im Anhang zeigt die an den Abstandshaltern gemessenen Kräfte, wobei auch hier die geringe statische Belastung der Abstandshalter vor Beginn des Kurzschlusses von den beim Kurzschluss gemessenen Kräften abgezogen wurde. Die maximal gemessenen Kräfte für Kurzschlussströme von 20 kA, 28 kA und 40 kA lagen entsprechend bei 2 bis 4 kN, 4 bis 6 kN und 7 bis 10 kN.
6.3 Leiterauslenkungen

Die bei den Kurzschlussversuchen auftretenden Bewegungen der Leiterseile wurden mit einer Hochgeschwindigkeitskamera aufgezeichnet. Diese Video-Aufnahmen sollen zukünftig zur Kontrolle von in Modellrechnungen simulierten Leiterbewegungen dienen und wurden noch nicht im einzelnen ausgewertet. Mit Hilfe der Video-Aufnahmen von Versuchen mit der 100-kV-Anordnung und 80 cm Leiterseildurchhang konnte jedoch unmittelbar nach der Versuchsserie festgestellt werden, dass die Bündelleiter sich beim Rückschwingen nach dem Kurzschluss berührten. Aufgrund dieses Umstandes wurde beschlossen, die 100-kV-Anordnung abgesehen von den Referenzversuchen mit enger Bündelung nur mit einem Leiterseildurchhang von 60 cm zu untersuchen, und stattdessen die 400-kV-Anordnung (mit entsprechend größerem Bündelmittenabstand) mit 80 cm Seildurchang zu prüfen.

7 Ausblick

Dieser Bericht gibt eine Übersicht über das durchgeführte Versuchsprogramm, die verwendeten Aufbauten und Messstellen und eine Zusammenfassung der Messergebnisse. Es ist davon auszugehen, dass die Ergebnisse der Untersuchungen des durchgeführten Forschungsvorhabens die veranlassenden, interessierten DKE-, IEC- und CIGRE-Gremien in die Lage versetzen, die von ihnen beabsichtigten weiterführenden theoretischen Studien in die Wege zu leiten und durchzuführen, damit ein normungsfähiges Berechnungsverfahren für Anlagen der betrachteten Bauart gefunden wird.

Die Experten von CIGRE 23-11 ESCC TF streben nach Übergabe der Unterlagen einen großangelegten Vergleich der Rechentechniken und Rechenverfahren an, dessen Ergebnisse - in Analogie zu dem Vorgehen bei biegesteifen Leitern - im Organ der CIGRÉ 'ELECTRA' veröffentlicht werden sollen.

Die Ergebnisse dieses Vorhabens werden zudem zusammenfassend auf der CIGRÉ-Session 2004 in Paris präsentiert werden.

8 Literatur

- [1] DIN EN 60865-1 (VDE 0103):1994: Kurzschlussströme Berechnung der Wirkung Teil 1: Begriffe und Berechnungsverfahren
- [2] IEC 60865-1:1993; Short-circuit currents Calculation of effects Part 1: Definitions and calculation methods.
- [3] CIGRE, Paris: CIGRE Thematic Brochure No. 105; The mechanical effects of short-circuit currents in open air substations, Volume 1 and 2, 1996

9 Anhang

9.1 Daten zu den Versuchsaufbauten

Tabelle 9.1: Maße und Gewichte der 100-kV-Anordnung

Allgemeine Maße des Versuchsaufb	aus			
Abstand Mitte Portal Nord - Mitte Po	rtal Süd		40000 mm	
Traversenbreite			1200 mm	
Traversenlänge			16500 mm	
Abstand Traversonmitte Traverson	mitto		29900 mm	
Abstand Traversenmille - Traversen	mille		38800 mm	
Abstand Traversenunterkante - Bode		8220 mm		
Abstand Traversenunterkante - Eins	peisung		1200 mm	
Maße und Gewichte eines Bündellei	ters (von P	ortal Nord na	ach Portal Mitte	e)
Bezeichnung	Anzahl	Masse	Länge	Bemerkungen
feste Aufhängung am Portal Nord	2	15.3 ka	80 mm	Kante Portal - Mitte Bolzen
Gabellasche senkrecht	2	2 1 kg	82 mm	Mitte Bolzen - Mitte Loch
Lasche	2	1.3 kg	112 mm	Mitte Loch Mitte Loch
Lasche (deppelt)	2	1.3 Ky	100 mm	Mitte Loch - Mitte Loch
	4	0.65 Kg	100 11111	
5-t-Meiswertaufnenmer	2	5.55 Kg	275 mm	Mitte Loch - Mitte Loch
Lasche (doppelt)	4	0.95 kg	95 mm	Mitte Loch - Mitte Loch
Klöppel mit Ose	2	0.48 kg	75 mm	Mitte Loch - Mitte Klöppel
Kette	2	30.3 kg	980 mm	Mitte Klöppel - Mitte Klöppe
Gabelkappe	2	2 kg	70 mm	Mitte Klöppel - Mitte Loch
Lasche (doppelt)	4	1.05 kg	115 mm	Mitte Loch - Mitte Loch
5-t-Meßwertaufnehmer	2	5.55 kg	275 mm	Mitte Loch - Mitte Loch
Lasche (doppelt)	4	1.05 kg	110 mm	Mitte Loch - Mitte Loch
Waage 400 auf 400/330/200	1	7.2 kg	68 mm	Mitte Loch - Mitte Loch
Seilklemme mit Seil	2	4.18 ka	230 mm	Mitte Loch - Ende Klemme
45°-Klemme Portal Nord	2	1.86 kg		10 cm vor Seilklemme
Unterschlaufung Nord	2	6.41 kg	330 mm	
	2	0.11 kg		
Leiterseil (lichte Länge) ca.			34381 mm	thoretischer Wert
Leiterseil (zw. Klemmen)	2	66.57 kg	34250 mm	Länge gemessen
45°-Klemme Portal Mitte	2	2.16 kg		10 cm vor Seilklemme
Unterschlaufung Mitte	2	6.22 kg	320 mm	
Seilklemme mit Seil	2	4.18 kg	230 mm	Ende Klemme - Mitte Loch
Spappschloß 400 - 600	2	23 ka	500 mm	Mitte Loch - Mitte Loch
$W_{2220} = 400/320/200$ auf 1 Loop	1	2.3 kg	65 mm	Mitte Loch Mitte Loch
Depped Weege 11 eeb ouf 400	1	7.3 Kg	70 mm	Mitte Loch - Mitte Loch
Doppel-waage illoch auf 400	1	6.12 Kg	70 mm	Mitte Loch - Mitte Kikesel
Kappe mit 90°-Lasche	2	2 kg	130 mm	Mitte Loch - Mitte Kloppel
Kette	2	30.3 kg	980 mm	Mitte Kloppel - Mitte Kloppe
Klöppel mit Ose	2	0.48 kg	75 mm	Mitte Klöppel - Mitte Loch
Gabellasche, senkrecht	2	2.1 kg	82 mm	Mitte Loch - Mitte Bolzen
feste Aufhängung am Portal Mitte	2	15.3 kg	80 mm	Mitte Bolzen - Kante Portal
alle Verbindungen zwischen den Ein	zelteilen m	iit:		
Bolzen 19 mm		0.2 kg		
Massan der verwendeten Abstandsh	altor:			
	ailei.			
Seilklemme für enge Bündelung		0.3 kg		
Abstandshalter 10 cm		0.9 kg		
Abstandshalter 20 cm		0.96 kg		
Abstandshalter 33 cm starr		2.52 ka		
Abstandshalter 33 cm teilbeweglich		1.46 ka		
		5		

Tabelle 9.2: Maße und Gewichte der 400-kV-Anordnung

Abstand Mitte Portal Nord - Mitte Portal Süd Traversenbreite Traversenlänge Abstand Traversenmitte - Traversenmitte Abstand Traversenunterkante - Boden Abstand Traversenunterkante - Einspeisung			40000 mm 1200 mm 16500 mm 38800 mm 11220 mm 1570 mm				
Maße und Gewichte eines Bündelleiters (von Portal Nord nach Portal Mitte)							
Bezeichnung	Anzahl	Masse	Länge	Bemerkungen			
feste Aufhängung am Portal Nord Gabellasche, senkrecht Lasche Lasche (doppelt) 5-t-Meßwertaufnehmer Lasche (doppelt) Klöppel mit Öse Kette Gabelkappe Lasche (doppelt) 5-t-Meßwertaufnehmer Lasche (doppelt)	2 2 4 2 4 2 2 2 4 2 4 2 4	15.3 kg 2.1 kg 1.3 kg 0.85 kg 5.55 kg 0.95 kg 0.48 kg 103.9 kg 2 kg 1.05 kg 5.55 kg 1.05 kg	80 mm 82 mm 112 mm 275 mm 95 mm 75 mm 3380 mm 70 mm 115 mm 275 mm 110 mm	Kante Portal - Mitte Bolzen Mitte Bolzen - Mitte Loch Mitte Loch - Mitte Klöppel Mitte Klöppel - Mitte Klöppe Mitte Klöppel - Mitte Loch Mitte Loch - Mitte Loch Mitte Loch - Mitte Loch Mitte Loch - Mitte Loch			
Waage 400 auf 400/330/200 Seilklemme mit Seil 45°-Klemme Portal Nord Unterschlaufung Nord	1 2 2 2	7.2 kg 4.18 kg 1.86 kg 11.17 kg	68 mm 230 mm 575 mm	Mitte Loch - Mitte Loch Mitte Loch - Ende Klemme 10 cm vor Seilklemme			
Leiterseil (lichte Länge) ca. Leiterseil (zw. Klemmen)	2	57.1 kg	29581 mm 29370 mm	thoretischer Wert Länge gemessen			
45°-Klemme Portal Mitte Unterschlaufung Mitte Seilklemme mit Seil	2 2 2	2.16 kg 11.66 kg 4.18 kg	600 mm 230 mm	10 cm vor Seilklemme Ende Klemme - Mitte Loch			
V-Lasche Spannschloß 400 - 600 Waage 400/330/200 auf 1 Loch Doppel-Waage 1Loch auf 400 Kappe mit 90°-Lasche Kette Klöppel mit Öse Gabellasche, senkrecht feste Aufhängung am Portal Mitte	2 2 1 2 2 2 2 2 2	1.2 kg 2.3 kg 7.3 kg 6.12 kg 2 kg 103.9 kg 0.48 kg 2.1 kg 15.3 kg	100 mm 500 mm 65 mm 70 mm 130 mm 3380 mm 75 mm 82 mm 80 mm	Mitte Loch - Mitte Loch Mitte Loch - Mitte Loch Mitte Loch - Mitte Loch Mitte Loch - Mitte Klöppel Mitte Klöppel - Mitte Klöppe Mitte Klöppel - Mitte Loch Mitte Loch - Mitte Bolzen Mitte Bolzen - Kante Portal Kante Portal - Mitte Bolzen			
alle Verbindungen zwischen den Einzelteilen mit: Bolzen 19 mm 0.2 kg							
Massen der verwendeten Abstandshalter:							
Seilklemme für enge Bündelung Abstandshalter 20 cm Abstandshalter 40 cm starr		0.3 kg 0.96 kg 1.6 kg					

Exemplarische Zusammenstellung von Oszillogrammen

Bild 9.1: Oszillogramme für 400-kV-Anordnung, enges Bündel, Messstellen in den Leitungen und am Portal

Bild 9.2: Oszillogramme für 400-kV-Anordnung, enges Bündel, Messstellen DMS1 bis DMS7

Bild 9.3: Oszillogramme für 400-kV-Anordnung, enges Bündel, Messstellen DMS8 bis DMS14

Bild 9.4: Oszillogramme für 400-kV-Anordnung, enges Bündel, Messstellen in den Mastfüßen

Bild 9.5: Oszillogramme für 400-kV-Anordnung, 40 cm Teilleiterabstand, zwei Abstandshalter, Messstellen in den Leitungen und am Portal

101 kA 100 kA-40.4 kA eff i3-50 -60.0 kA 200 um/m-DMS1-5 -200 um/m 200 um/m-DMS2-5 -200 um/m-200 um/m-DMS3-5 -200 um/m-200 um/m DMS4-5 -200 um/m-200 um/m-DMS5-5 -200 um/m_ 200 um/m-DMS6-5 -200 um/m-200 um/m-DMS7-5 -200 um/m_ 5 8 0 2

Bild 9.6: Oszillogramme für 400-kV-Anordnung, 40 cm Teilleiterabstand, zwei Abstandshalter, Messstellen DMS1 bis DMS7

FGH - LV 501-02/217

Bild 9.7: Oszillogramme für 400-kV-Anordnung, 40 cm Teilleiterabstand, zwei Abstandshalter, Messstellen DMS8 bis DMS14

FGH - LV 501-02/217

Bild 9.8: Oszillogramme für 400-kV-Anordnung, 40 cm Teilleiterabstand, zwei Abstandshalter, Messstellen in den Mastfüßen

Bild 9.9: Oszillogramme für 400-kV-Anordnung, 40 cm Teilleiterabstand, ein Abstandshalter, Messstellen in den Abstandshaltern

Bild 9.10: Oszillogramme für 400-kV-Anordnung, 40 cm Teilleiterabstand, zwei Abstandshalter, Messstellen in den Abstandshaltern

FGH - LV 501-02/217

Grafische Auswertung der gemessenen Kraftmaxima

Portalkräfte: 100-kV-Anordnung, enges Bündel

Punkte: Messwerte, Linien: Mittelwerte

Bild 9.12: Durch Ausschwingen der Bündelleiter von den Leiterseilen auf das Portal ausgeübte Kräfte F_t.

Bild 9.13: Durch Rückfall der Bündelleiter von den Leiterseilen auf das Portal ausgeübte Kräfte F_f.

Portalkräfte: 100-kV-Anordnung, 10 cm Teilleiterabstand

Punkte: Messwerte, Linien: Mittelwerte

Bild 9.15: Durch Ausschwingen der Bündelleiter von den Leiterseilen auf das Portal ausgeübte Kräfte F_t.

Bild 9.16: Durch Rückfall der Bündelleiter von den Leiterseilen auf das Portal ausgeübte Kräfte F_f

Portalkräfte: 100-kV-Anordnung, 20 cm Teilleiterabstand

Punkte: Messwerte, Linien: Mittelwerte

Bild 9.17: Durch Kontraktion der Bündelleiter von den Leiterseilen auf das Portal ausgeübte Kräfte F_{pi}.

Bild 9.18: Durch Ausschwingen der Bündelleiter von den Leiterseilen auf das Portal ausgeübte Kräfte F_t.

Bild 9.19: Durch Rückfall der Bündelleiter von den Leiterseilen auf das Portal ausgeübte Kräfte F_f.

Portalkräfte: 100-kV-Anordnung, 33 cm Teilleiterabstand, starre Abstandshalter

Bild 9.21: Durch Ausschwingen der Bündelleiter von den Leiterseilen auf das Portal ausgeübte Kräfte F_t.

Bild 9.22: Durch Rückfall der Bündelleiter von den Leiterseilen auf das Portal ausgeübte Kräfte F_f.

Portalkräfte: 100-kV-Anordnung, 33 cm Teilleiterabstand, teilbewegl. Abstandshalter

Punkte: Messwerte, Linien: Mittelwerte

Bild 9.23: Durch Kontraktion der Bündelleiter von den Leiterseilen auf das Portal ausgeübte Kräfte F_{pi}.

Bild 9.24: Durch Ausschwingen der Bündelleiter von den Leiterseilen auf das Portal ausgeübte Kräfte F_t.

Bild 9.25: Durch Rückfall der Bündelleiter von den Leiterseilen auf das Portal ausgeübte Kräfte F_f.

Portalkräfte: 400-kV-Anordnung, enges Bündel

Punkte: Messwerte, Linien: Mittelwerte

t_k / s

Bild 9.26: Durch Kontraktion der Bündelleiter von den Leiterseilen auf das Portal ausgeübte Kräfte F_{pi}.

Bild 9.27: Durch Ausschwingen der Bündelleiter von den Leiterseilen auf das Portal ausgeübte Kräfte F_t.

Bild 9.28: Durch Rückfall der Bündelleiter von den Leiterseilen auf das Portal ausgeübte Kräfte F_f.

Portalkräfte: 400-kV-Anordnung, 20 cm Teilleiterabstand

Punkte: Messwerte, Linien: Mittelwerte

Bild 9.30: Durch Ausschwingen der Bündelleiter von den Leiterseilen auf das Portal ausgeübte Kräfte F_t.

Bild 9.31: Durch Rückfall der Bündelleiter von den Leiterseilen auf das Portal ausgeübte Kräfte F_f.

Portalkräfte: 400-kV-Anordnung, 40 cm Teilleiterabstand

Punkte: Messwerte, Linien: Mittelwerte

Bild 9.32: Durch Kontraktion der Bündelleiter von den Leiterseilen auf das Portal ausgeübte Kräfte F_{pi}.

Bild 9.33: Durch Ausschwingen der Bündelleiter von den Leiterseilen auf das Portal ausgeübte Kräfte F_t.

Bild 9.34: Durch Rückfall der Bündelleiter von den Leiterseilen auf das Portal ausgeübte Kräfte F_f.

Kräfte im Mastfuß: 100-kV-Anordnung, enges Bündel

Punkte: Messw. der Mastfüße, Linien: Mittelwerte

250.0

150.0

100.0

50.0

0.0 + 0

0.1

0.2

t_k / s

0.3

0.4

0.5

200.0 g

Bild 9.35: Durch Kontraktion der Bündelleiter oder Ausschwingen der Bündel hervorgerufene Kraftmaxima F_{KM} im Mastfuß.

Bild 9.36: Durch Schwingungen des Versuchsaufbaus hervorgerufene Zugmaxima F_{ZM} der Kräfte im Mastfuß.

Bild 9.37: Durch Schwingungen des Versuchsaufbaus hervorgerufene Druckmaxima F_{DM} der Kräfte im Mastfuß.

Kräfte im Mastfuß: 100-kV-Anordnung, 10 cm Teilleiterabstand

Punkte: Messw. der Mastfüße, Linien: Mittelwerte

Bild 9.39: Durch Schwingungen des Versuchsaufbaus hervorgerufene Zugmaxima F_{ZM} der Kräfte im Mastfuß.

Bild 9.40: Durch Schwingungen des Versuchsaufbaus hervorgerufene Druckmaxima F_{DM} der Kräfte im Mastfuß.

Kräfte im Mastfuß: 100-kV-Anordnung, 20 cm Teilleiterabstand

Punkte: Messw. der Mastfüße, Linien: Mittelwerte

Bild 9.41: Durch Kontraktion der Bündelleiter oder Ausschwingen der Bündel hervorgerufene Kraftmaxima F_{KM} im Mastfuß.

Bild 9.42: Durch Schwingungen des Versuchsaufbaus hervorgerufene Zugmaxima F_{ZM} der Kräfte im Mastfuß.

Bild 9.43: Durch Schwingungen des Versuchsaufbaus hervorgerufene Druckmaxima F_{DM} der Kräfte im Mastfuß.

Kräfte im Mastfuß: 100-kV-Anordnung, 33 cm Teilleiterabstand, starre Abstandshalter

Punkte: Messw. der Mastfüße, Linien: Mittelwerte

Bild 9.44: Durch Kontraktion der Bündelleiter oder Ausschwingen der Bündel hervorgerufene Kraftmaxima F_{KM} im Mastfuß.

Bild 9.45: Durch Schwingungen des Versuchsaufbaus hervorgerufene Zugmaxima F_{ZM} der Kräfte im Mastfuß.

Bild 9.46: Durch Schwingungen des Versuchsaufbaus hervorgerufene Druckmaxima F_{DM} der Kräfte im Mastfuß.

Kräfte im Mastfuß: 100-kV-Anordnung, 33 cm Teilleiterabstand, teilbewegl. Abstandshalter

Punkte: Messw. der Mastfüße, Linien: Mittelwerte

Bild 9.47: Durch Kontraktion der Bündelleiter oder Ausschwingen der Bündel hervorgerufene Kraftmaxima F_{KM} im Mastfuß.

Bild 9.49: Durch Schwingungen des Versuchsaufbaus hervorgerufene Druckmaxima F_{DM} der Kräfte im Mastfuß.

Kräfte im Mastfuß: 400-kV-Anordnung, enges Bündel

Punkte: Messw. der Mastfüße, Linien: Mittelwerte

Bild 9.50: Durch Kontraktion der Bündelleiter oder Ausschwingen der Bündel hervorgerufene Kraftmaxima F_{KM} im Mastfuß.

Bild 9.51: Durch Schwingungen des Versuchsaufbaus hervorgerufene Zugmaxima F_{ZM} der Kräfte im Mastfuß.

Bild 9.52: Durch Schwingungen des Versuchsaufbaus hervorgerufene Druckmaxima F_{DM} der Kräfte im Mastfuß.

Kräfte im Mastfuß: 400-kV-Anordnung, 20 cm Teilleiterabstand

Punkte: Messw. der Mastfüße, Linien: Mittelwerte

Bild 9.53: Durch Kontraktion der Bündelleiter oder Ausschwingen der Bündel hervorgerufene Kraftmaxima F_{KM} im Mastfuß.

Bild 9.54: Durch Schwingungen des Versuchsaufbaus hervorgerufene Zugmaxima F_{ZM} der Kräfte im Mastfuß.

Bild 9.55: Durch Schwingungen des Versuchsaufbaus hervorgerufene Druckmaxima F_{DM} der Kräfte im Mastfuß.

Kräfte im Mastfuß: 400-kV-Anordnung, 40 cm Teilleiterabstand

Punkte: Messw. der Mastfüße, Linien: Mittelwerte

Bild 9.56: Durch Kontraktion der Bündelleiter oder Ausschwingen der Bündel hervorgerufene Kraftmaxima F_{KM} im Mastfuß.

Bild 9.57: Durch Schwingungen des Versuchsaufbaus hervorgerufene Zugmaxima F_{ZM} der Kräfte im Mastfuß.

Bild 9.58: Durch Schwingungen des Versuchsaufbaus hervorgerufene Druckmaxima F_{DM} der Kräfte im Mastfuß.

Kräfte in den Abstandshaltern: 400-kV-Anordnung, 40 cm Teilleiterabstand

Punkte: Messwerte, Linien: Mittelwerte

Bild 9.59: Maximale Kräfte in den Abstandshaltern.

Tabellarische Ergebnisübersicht
	(0	Druckmaximum [kN] (5-Hz-Filter)	-35 -70 -87 -105 -189 -189 -236 -236 -338 -338 -338 -58 -67 -195 -195 -195 -378 -378
	MAFU	Zugmaximum [kN] (5-Hz-Filter)	31 54 58 1109 1153 1111 2281 36 52 52 58 110 1110 1132 284 300
en	tseite (Kurzschlußmaximum [kN] (5-Hz-Filter)	-16 -26 -48 -48 -99 -141 -161 -141 -161 -22 -33 -55 -157 -159 -159 -153 -158 -158 -338 -338
lastung	SO	Nullinie [kN]	1.3 0.5 0.5 0.5 0.5 0.8 0.8 0.8 0.8 0.2 0.2 0.2 0.2 0.3
stfußbe	(N	Druckmaximum [kN] (5-Hz-Filter)	-36 -72 -110 -110 -1197 -248 -248 -358 -37 -37 -59 -37 -149 -149 -149 -204 -149 -371
Mas	MAFU	Zugmaximum [kN] (5-Hz-Filter)	28 53 70 1111 1111 1113 1113 59 52 53 53 53 1111 1111 1116 1125 53 53 53 53 53 53 53 53 53 53 53 53 53
	stseite (Kurzschlußmaximum [kN] (5-Hz-Filter)	-18 -27 -27 -47 -47 -47 -47 -47 -48 -48 -143 -143 -21 -21 -21 -117 -117 -117 -118 -58 -58 -58 -58 -117 -117 -1163 -345 -345 -345 -345 -345 -345 -345 -34
	We	Nullinie [kN]	-0.6 0.5 -0.5 -0.2 -1.6 -1.1 -1.1 -0.2 -0.3 -0.1 -0.1
		Pückfallmaximum [kN]	- \u03cm 4 \u03cm 0 0 4 \u03cm 4 \u03cm 0 \u03cm 0 \u03cm 0 4 \u03cm 4 \u03cm 0 \u03cm 0 \u03cm 4 \u03cm 0 \u03cm 0 \u03cm 4 \u03cm 0 \u03cm 4 \u03cm 0 \u03cm 4 \u03cm 0
		(5-Hz-Filter)	-13. -15. -17. -17. -20. -20. -22. -22. -21. -21. -23. -36. -37. -37.
	PO)	Zwischenminimum [kN] (5-Hz-Filter)	-10.2 -7.6 -7.6 -5.7 -5.1 -5.1 -12.2 -11.6 -11.16 -
	Ostseite (K	Ausschwingmaximum [kN] (5-Hz-Filter)	-13.0 -14.1 -15.5 -15.1 -15.1 -20.1 -23.3 -35.0 -38.4 -37.8 -37.0 -20.1 -20.1 -20.1 -20.1 -20.1 -20.1 -20.1 -25.5 -20.1 -25.5 -26.1 -27.1
		Kontraktionsmaximum [kN] (50-Hz-Filter)	-13.4 -13.5 -13.5 -15.5 -15.5 -15.5 -15.5 -15.5 -17.9 -17.9 -17.9 -21.9 -26.3 -26.3 -26.3
ĸräfte	Westseite (KPW)	Nullinie [kN]	
Portall		Rückfallmaximum [kN] (5-Hz-Filter)	-12.7 -15.3 -15.3 -15.2 -15.2 -15.3 -22.6 -25.5 -27.3 -35.1 -17.9 -35.1 -27.2 -27.2 -27.2 -27.2 -27.2 -27.2 -27.2 -27.2 -27.2 -27.2 -27.2 -27.5
		Zwischenminimum [kN] (5-Hz-Filter)	-9.6 -6.9 -6.9 -6.9 -7.4 -7.4 -5.2 -5.2 -13.5 -13.5 -13.5 -12.6 -12.6 -12.6 -12.2 -12.2 -12.2 -12.2 -12.2 -12.2 -10.6
		Ausschwingmaximum [kN] (5-Hz-Filter)	-12.1 -12.1 -14.0 -14.8 -14.8 -23.3 -25.0 -20.0 -20.0 -17.5 -17.5 -17.5 -17.5 -17.5 -17.5 -20.0
		Kontraktionsmaximum [kN] (50-Hz-Filter)	-13.0 -13.1 -13.1 -14.5 -14.5 -14.5 -14.5 -17.6 -17.6 -17.6 -17.6 -17.6 -17.6 -20.8 -20.8 -20.8 -24.3 -26.2
		Nullinie [kN]	-10.6 -10.6 -10.5 -10.5 -10.5 -10.5 -10.6 -14.8 -14.8 -14.9 -14.9 -14.9 -14.9 -14.0 -14.5 -14.5 -15.1 -15.0
		Kurzschlußdauer [sec]	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
(F)	schluß	leff [kA]	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Irdnung	Kurz	î [۲۵]	$\begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ & \end{array} \\ \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ \\ \\$
-Anc		۱ [۱۸۸]	44 50 50 10 10 20 20 20 20 20 20 20 20 20 20 20 20 20
\>-oc	au	Anahl der Abstandshalter	ນນນນນນນນນ ນນນນນນນນ
ch (1(Aufb	Teilleiterabstand [cm]	00000000 000000000000000000000000000000
ersuc		Durchhang [cm]	800 800 800 800 800 800 800 800 800 800
>		VersNr.	50102025 50102026 50102027 50102028 50102028 50102031 50102033 50102033 50102033 50102033 50102033 50102036 50102036 50102038 5010202038 50102038 500000000000000000000000000000000000

Tabelle 9.3: Messergebnisse 100-kV-Anordnung, enges Bündel

	(C	Druckmaximum [kN] (5-Hz-Filter)	-53 -53 -66 -173 -175 -175 -202 -357 -357 -357 -337 -55 -53 -175 -125 -170 -125 -335 -335 -335 -335 -335 -335 -335 -3
	tseite (MAFU	Zugmaximum [kN] (5-Hz-Filter)	25 25 57 57 103 138 137 257 281 46 60 45 60 45 60 129 129 275 264 43 32 275 56 43 88 135 56 56 100
len		Kurzschlußmaximum [kN] (5-Hz-Filter)	-21 -21 -62 -71 -71 -129 -129 -223 -324 -223 -324 -116 -116 -116 -116 -116 -116 -116 -11
lastung	SO	Nullinie [kN]	1.3 0.5 0.2 0.2 0.2 0.2 0.2 1.3 1.3 1.3 1.3 1.3 0.2 1.3 1.3 0.2 0.3 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
stfußbe	(M)	Druckmaximum [kN] (5-Hz-Filter)	-24 -53 -75 -67 -140 -140 -3359 -332 -332 -332 -129 -178 -129 -178 -129 -178 -333 -333 -333 -333 -178 -178 -178 -178 -178 -178 -178 -336 -178 -336 -178 -178 -178 -185 -185 -185 -185 -185 -185 -206 -185 -206 -206 -206 -206 -206 -206 -206 -206
Ma	(MAFU	Zugmaximum [kN] (5-Hz-Filter)	25 25 59 40 105 141 137 281 286 62 62 62 62 62 62 48 48 731 256 58 31 45 110 1139 1100 1139 276 58 276 58 276 58 276 58 276 57 58 57 57 57 57 57 58 57 58 58 58 58 58 58 58 58 58 58 58 58 58
	stseite	Kurzschlußmaximum [kN] (5-Hz-Filter)	-22 -42 -64 -71 -167 -167 -25 -37 -229 -373 -37 -120 -120 -120 -120 -120 -120 -158 -333 -333 -333 -333 -266 -117 -159 -204 -175 -204 -333 -333 -333 -3336 -3336 -3336 -3336 -3336 -3336 -3336 -3336 -3336 -3336 -3336 -3336 -3336 -3336 -3336 -3376 -226 -226 -326 -326 -326 -326 -326 -32
	We	Nullinie [kN]	0.9 0.1 0.3 0.2 0.2 0.2 0.2 0.2 0.2 1.3 1.3 0.2 1.5 1.1 0.2 1.5 1.1 0.2 1.5 1.0 0.2 1.0 0.2 0.2 1.0 0.2 0.2 1.0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0
		Rückfallmaximum [kN] (5-Hz-Filter)	-18.1 -20.0 -21.3 -21.4 -21.4 -25.8 -37.1 -18.8 -37.1 -18.8 -37.1 -19.4 -17.2 -38.8 -22.1 -17.2 -17.2 -17.2 -17.2 -27.8 -27.8 -27.8 -27.8 -27.8 -27.3 -27.1 -17.2 -27.3 -27.3 -27.1 -27.3 -27.1 -27.3 -27.1 -27.3 -27.1 -27.3 -27.1 -27.3 -27.1 -27.2 -27.1 -27.2 -27.3 -27.1 -27.2 -27.3 -27.1 -27.2 -27.1 -27.2 -27.1 -27.2 -27.1 -27.2
	PO)	Zwischenminimum [kN] (5-Hz-Filter)	-14:2 -13:5 -13:5 -13:5 -13:5 -12:2 -12:2 -12:6 -12:6 -12:5 -12:5 -12:6
	seite (K	Ausschwingmaximum [kN] (5-Hz-Filter)	-17:2 -19:1 -20:8 -20:8 -20:8 -20:9 -25:3 -19:5 -19:5 -19:5 -19:6 -19:6 -19:6 -19:6 -19:6 -19:6 -19:6 -20:9 -20:9 -20:4 -19:6 -20:2 -20:4 -20:2 -20:4 -20:2
	Osts	Kontraktionsmaximum [kN] (50-Hz-Filter)	-18.2 -18.2 -17.9 -17.9 -17.9 -20.6 -20.4 -20.6 -20.6 -20.6 -21.8 -21.8 -21.9 -21.9 -21.9 -21.9 -21.9 -21.9 -21.9 -22.4 -22.6 -22.6 -22.5
kräfte		Nullinie [kN]	-15.2 -
Portal	(PW)	Rückfallmaximum [kN] (5-Hz-Filter)	-18.1 -20.2 -21.6 -21.7 -20.2 -20.2 -35.9 -35.9 -38.6 -18.4 -22.1 -22.1 -22.3 -30.5 -38.1 -21.8 -22.4 -21.8 -22.1 -21.8 -22.1 -21.8 -38.1 -28.3 -38.1 -28.3 -38.1 -28.3 -38.5 -28.3 -38.5 -28.3 -38.5 -28.3 -38.5 -28.3 -38.5 -28.3 -38.5 -28.3 -38.5 -28.3 -28.5
		Zwischenminimum [kN] (5-Hz-Filter)	-14.2 -12.3 -12.5 -12.5 -12.5 -12.4 -11.6 -12.4 -12.4 -12.4 -12.8 -12.8 -12.8 -12.8 -12.8 -12.8 -12.8 -12.8 -12.8 -12.8 -12.8 -12.8 -12.8 -12.8 -12.8 -12.8
	seite (k	Ausschwingmaximum [kN] (5-Hz-Filter)	-17.2 -19.1 -20.9 -20.6 -20.6 -30.1 -31.5 -45.5 -17.4 -17.4 -17.1 -25.9 -25.9 -25.9 -25.9 -25.9 -25.9 -25.9 -25.9 -25.4 -19.3 -26.6 -26.6 -26.6 -26.6 -26.5
	West	Kontraktionsmaximum [kN] (50-Hz-Filter)	-18.4 -18.9 -21.2 -21.2 -21.3 -21.3 -21.3 -20.4 -20.4 -22.4 -22.5
		Nullinie [kN]	-15.2 -15.2 -15.2 -15.2 -15.5 -15.5 -15.5 -15.1 -15.2 -15.2 -15.2 -15.2 -15.2 -15.2 -15.2 -15.2 -15.2 -15.2 -15.1 -15.4 -15.4 -15.4 -15.4 -15.5 -15.2 -15.1 -15.4 -15.4 -15.2 -15.2 -15.2 -15.4 -15.2
	ß	Kurzschlußdauer [sec]	$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$
(bur	ırzschlu	leff [kA]	20.0 28.2 28.2 28.2 28.2 20.0 40.1 20.1 20.1 20.1 27.9 27.9 27.9 27.9 20.0 220.0 19.8 27.9 27.9 28.3 28.3 28.3 28.3 20.1 20.1 20.1 20.1 20.0 20.0 20.0 20.0
Anordnu	KL	Î [kA]	51.5 51.5 51.5 51.5 51.4 71.8 99.3 51.9 99.4 99.1 99.1 99.1 71.7 71.7 71.7 71.1 71.1
-kV-A	-	Anahl der Abstandshalter	00000000 000000000
ו (100	ufbai	Teilleiterabstand [cm]	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ersuch	A	Durchhang [cm]	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
>		VersNr.	50102089 50102090 50102091 50102092 50102095 50102095 50102095 50102086 50102081 50102081 50102081 50102083 50102083 50102086 50102086 50102086 50102086 50102086 50102075 50102077 50102077 50102077 50102077 50102077 50102077 50102077 50102077 50102077 50102077 50102077 50102077 50102077 50102077 50102077 50102077

 Tabelle 9.4:
 Messergebnisse 100-kV-Anordnung, 10 cm Teilleiterabstand

	(C	Druckmaximum [kN] (5-Hz-Filter)	-36 -52 -52 -130 -197 -197 -167 -135 -328 -328 -92 -92 -92 -92 -92 -92 -92 -92 -92 -92
	tseite (MAFU	Zugmaximum [kN] (5-Hz-Filter)	35 45 59 46 89 1129 1129 1120 1122 1122 1122 1122 112
len		Kurzschlußmaximum [kN] (5-Hz-Filter)	-34 -34 -56 -64 -64 -151 -151 -206 -3353 -353 -353 -154 -118 -128 -128 -128 -128 -128 -128 -128
lastung	S	Nullinie [kN]	$\begin{array}{c} 0.1\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2$
stfußbe	(M	Druckmaximum [kN] (5-Hz-Filter)	-36 -54 -72 -63 -63 -176 -203 -327 -327 -89 -99 -99 -145 -145 -145 -145 -145 -145 -147 -147 -147 -147 -147 -173 -371
Ma	(MAFU	Zugmaximum [kN] (5-Hz-Filter)	36 46 59 48 89 89 80 241 108 82 82 82 82 82 82 1124 1125 1125 1125 1125 1125 1125 112
	stseite	Kurzschlußmaximum [kN] (5-Hz-Filter)	-34 -57 -57 -57 -65 -109 -1155 -211 -320 -366 -63 -63 -63 -63 -63 -63 -63 -62 -159 -1108 -1128 -1178 -1178 -1178 -1178 -259 -3355 -3355 -1178 -1
	We	Nullinie [kN]	$\begin{array}{c} 0.7\\ -0.5\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.5\\ $
		Rückfallmaximum [kN] (5-Hz-Filter)	-18:9 -22:3 -22:3 -22:3 -22:3 -22:4 -22:4 -22:3 -22:4 -22:3 -22:4 -22:4 -22:4 -22:4 -22:4 -22:4 -22:4 -22:4 -22:4 -22:4 -22:4 -22:4 -22:3 -23:3 -22:3 -23:3
	(Oc	Zwischenminimum [kN] (5-Hz-Filter)	-14.7 -14.7 -13.1 -13.1 -13.1 -12.2 -12.6 -12.6 -12.6 -12.6 -12.6 -12.8 -12.8 -12.8 -12.8 -12.8 -12.8 -12.8 -12.8 -12.8
	eite (KF	Ausschwingmaximum [kN] (5-Hz-Filter)	-18:1 -21:1 -21:1 -21:1 -21:1 -25:9 -25:9 -20:9 -22:0 -20:0
	Osts	Kontraktionsmaximum [kN] (50-Hz-Filter)	-21.3 -22.0 -22.0 -22.0 -22.0 -22.0 -25.1 -25.1 -25.1 -25.1 -25.2 -25.2 -25.2 -25.2 -25.2 -25.2 -25.2 -25.3 -25.2 -25.3
kräfte		Nullinie [kN]	$\begin{array}{c} -2.5 \\ -2$
Portal	PW)	Rückfallmaximum [kN] (5-Hz-Filter)	-19.1 -19.1 -22.1 -22.1 -22.1 -22.1 -22.1 -22.3
		Zwischenminimum [kN] (5-Hz-Filter)	-12.6
	seite (K	Ausschwingmaximum [kN] (5-Hz-Filter)	-18.1 -19.5 -19.5 -21.1 -21.2 -21.2 -21.2 -22.3 -45.8 -45.8 -22.4 -22.5 -22.6 -22.6 -22.6 -22.5
	West	Kontraktionsmaximum [kN] (50-Hz-Filter)	-20.4 -21.3 -21.3 -21.3 -21.2 -21.2 -21.3 -26.8 -26.3 -25.1 -25.1 -25.1 -25.1 -24.7 -24.7 -24.7 -24.7 -24.7 -24.7 -27.2 -24.7 -27.2
		Nullinie [kN]	-15.24 -15.44 -15.23 -15.33 -1
	ß	Kurzschlußdauer [sec]	$\begin{array}{c} 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\$
(bur	ırzschlu	leff [kA]	20.0 20.0 20.1 20.1 20.1 20.2 20.2 20.2
-kV-Anordnu	KL	Î [kA]	51.6 51.6 51.6 72.2 72.2 72.3 102.0 52.1 52.1 52.1 52.1 72.8 72.9 72.9 72.9 72.0 72.0 72.0 72.0 72.0 72.0 100.0 102.0 100.00000000
	-	Anahl der Abstandshalter	00000000 000000000
ו (100	ufbai	Teilleiterabstand [cm]	20 20 20 20 20 20 20 20 20 20 20 20 20 2
ersuch	A	Durchhang [cm]	8 8 8 8 8 8 8 8 8 8 8 8 8 8
>		VersNr.	50102053 50102055 50102055 50102055 50102056 50102056 50102059 50102061 50102045 50102045 50102048 50102048 50102048 50102048 50102048 50102048 50102055 50102055 50102055 50102056

 Tabelle 9.5:
 Messergebnisse 100-kV-Anordnung, 20 cm Teilleiterabstand

	(0	Druckmaximum [kN] (5-Hz-Filter)	-56 -69 -69 -69 -69 -116 -146 -146 -146 -101 -115 -115 -284 -284 -101 -115 -168 -284 -284 -168 -284 -168 -284 -168 -284 -168 -284 -284 -221 -175 -234 -234 -234 -234 -234 -234 -234 -234
stfußbelastungen	Ostseite (MAFU	Zugmaximum [kN] (5-Hz-Filter)	51 61 60 59 68 109 78 1131 131 131 131 131 131 131 131 131 1
		Kurzschlußmaximum [kN] (5-Hz-Filter)	-63 -68 -68 -68 -90 -104 -176 -176 -176 -171 -101 -111 -111 -1113 -1135 -1135 -1135 -1135 -1135 -1135 -1135 -1135 -1135 -234 -236 -234 -236 -236 -236 -236 -236 -236 -236 -236
		Nullinie [kN]	$\begin{array}{c} 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$
	(N	Druckmaximum [kN] (5-Hz-Filter)	-55 -72 -72 -72 -118 -1150 -1150 -1166 -1166 -1166 -1166 -1166 -1166 -1166 -1166 -1166 -1166 -1166 -1166 -1166 -1166 -1179 -3308 -3308 -3308 -3308 -3308 -3308 -3308 -3338 -3358 -3558 -35
Ма	(MAFU	Zugmaximum [kN] (5-Hz-Filter)	52 63 63 63 71 108 77 162 135 135 135 146 88 135 116 88 83 117 116 82 115 115 115 115 115 115 115 115 115 11
	stseite	Kurzschlußmaximum [kN] (5-Hz-Filter)	-66 -69 -69 -69 -69 -108 -128 -128 -128 -128 -121 -121 -121 -12
	We	Nullinie [kN]	0.3 1.5 1.2 1.2 1.3 0.4 0.4 0.4 0.4 0.5 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
		Rückfallmaximum [kN] (5-Hz-Filter)	-21.2 -21.4 -22.4 -22.4 -22.6 -22.6 -22.5 -22.5 -22.5 -22.3 -37.5 -22.3 -22.5 -22.5 -22.5 -22.5 -22.5 -22.5 -22.5 -22.5 -22.5 -22.5 -23.6 -22.5 -22.5 -22.5 -23.6 -22.5 -23.6 -22.5 -23.6 -23.5 -23.3 -23.5 -23.3 -23.5 -23.3 -23.5 -23.3 -23.5 -23.3 -23.5 -23.5 -23.5 -23.3 -23.5 -23.3 -23.5 -23.3 -23.5 -23.3 -23.5 -23.3 -23.5
	0)	Zwischenminimum [kN] (5-Hz-Filter)	-14.1 -13.1 -13.1 -13.2 -13.2 -11.5 -11.5 -11.5 -12.6 -12.6 -12.0 -12.0 -12.0 -12.2 -11.3 -12.2 -11.3 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0
	seite (KF	Ausschwingmaximum [kN] (5-Hz-Filter)	-19.8 -21.6 -21.6 -21.6 -21.6 -22.1 -22.8 -42.5 -22.9 -22.9 -22.9 -22.9 -22.9 -22.9 -22.9 -22.9 -22.9 -22.1 -22.2 -22.1 -22.1 -22.2 -22.1 -22.1 -22.2 -22.1
	Osts	Kontraktionsmaximum [kN] (50-Hz-Filter)	-16.8 -16.8 -16.5 -16.3 -22.2 -21.5 -21.5 -21.5 -21.5 -21.5 -20.3 -30.5 -30.5 -30.5 -30.5 -30.5 -30.5 -30.5 -30.5 -36.6 -36.0 -36.5
kräfte		Nullinie [kN]	-15.4 -15.1 -15.1 -15.3 -15.3 -15.6 -15.6 -15.6 -15.5 -15.5 -15.5 -15.5 -16.0
Porta	(PW)	Rückfallmaximum [kN] (5-Hz-Filter)	-20.5 -21.5 -21.5 -21.5 -21.5 -21.5 -21.5 -25.3 -34.7 -26.9 -26.9 -22.5 -22.5 -22.5 -22.5 -22.3 -22.5 -22.5 -30.8 -32.5 -32.5 -32.5 -32.5 -32.5 -32.5 -32.5 -32.5 -32.5 -32.5 -32.5 -32.5 -32.5 -33.7 -26.9 -32.5 -33.3 -33.7 -26.9 -32.5 -33.3 -33.7 -26.9 -35.4 -35.7
		Zwischenminimum [kN] (5-Hz-Filter)	-13.1 -13.5 -11.4 -11.4 -11.4 -11.7 -12.3 -10.7 -12.3 -12.3 -12.3 -12.3 -12.3 -12.3 -12.3 -12.0 -12.0 -11.7 -11.0 -9.2 -9.2 -11.0 -11.0 -11.0 -12.0 -11.0 -12.0 -11.0 -12.0 -2.0 -11.0 -2.0 -11.0 -2.0 -11.0 -2.0 -11.0 -2.0 -11.0 -2.0 -11.0 -2.0 -11.0 -2.0 -11.0 -2.0 -11.0 -2.0 -2.0 -11.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2
	tseite (F	Ausschwingmaximum [kN] (5-Hz-Filter)	-20.1 -20.1 -21.1 -21.1 -22.6 -22.6 -22.6 -43.3 -43.3 -22.5 -22.6 -22.6 -22.5
	West	Kontraktionsmaximum [kN] (50-Hz-Filter)	-16.9 -16.4 -16.4 -21.3 -21.3 -31.5 -31.5 -31.5 -32.3 -35.2 -21.5 -21.5 -21.5 -29.2
		Nullinie [kN]	-15.5 -15.5 -15.2 -15.2 -15.2 -15.2 -15.5
	ß	Kurzschlußdauer [sec]	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
(bur	ırzschlu	leff [kA]	20.8 20.1 20.1 20.1 28.5 28.1 20.1 20.1 20.1 28.3 28.3 28.2 28.2 28.2 28.2 28.2 28.2
)-kV-Anordnu	Ku	Î [kA]	53.3 51.5 51.5 51.5 51.5 71.0 77.0 990.9 990.9 990.9 990.9 9101.0 101.0 51.8 51.8 51.6 51.6 51.6 51.5 71.5 71.5 71.5 71.5 71.5 71.5 71.6 71.6 101.0 101.0
	n	Anahl der Abstandshalter	0000000 ++++++ 00000000
ר) ר	∖ufba	Teilleiterabstand [cm]	3333333333 333333333333333333333333333
ersuct	4	Durchhang [cm]	60 60 60 60 60 60 60 60 60 60 60 60 60 6
Vé		VersNr.	50102098 50102099 50102100 50102101 50102101 50102103 50102104 50102105 50102133 50102133 50102134 50102134 50102134 50102134 50102145 501002145 5000200000000000000000000000000000000

Tabelle 9.6:Messergebnisse 100-kV-Anordnung, 33 cm Teilleiterabstand, starre
Abstandshalter

lastungen	(0	Druckmaximum [kN] (5-Hz-Filter)	-56 -69 -69 -69 -69 -116 -1146 -1146 -1146 -1146 -1146 -233 -289 -289 -289 -289 -289 -215 -1121 -1121 -1152 -233 -233 -233 -2335 -2335 -2335 -2356 -25
	MAFU	Zugmaximum [kN] (5-Hz-Filter)	51 60 63 69 69 68 109 77 77 77 77 72 81 123 122 122 123 123 123 123 123 123 12
	stseite (Kurzschlußmaximum [kN] (5-Hz-Filter)	-63 -68 -68 -90 -104 -176 -176 -262 -262 -114 -114 -114 -114 -114 -114 -114 -11
	Ő	Nullinie [kN]	1.1 2.8 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3
stfußbe	N)	Druckmaximum [kN] (5-Hz-Filter)	-55 -72 -72 -72 -118 -150 -150 -150 -149 -149 -149 -1165 -1165 -1188 -1165 -1165 -1177 -165 -1177 -1188 -1177 -1165 -1177 -208 -228 -228 -228 -228 -228 -228
Ма	(MAFU	Zugmaximum [kN] (5-Hz-Filter)	52 63 63 77 77 162 77 162 124 124 127 112 112 112 112 113 116 112 112 113 116 116 116 116 116 116 116 116 116
	stseite	Kurzschlußmaximum [kN] (5-Hz-Filter)	-66 -69 -69 -92 -108 -178 -178 -267 -267 -101 -116 -116 -116 -116 -116 -118 -254 -254 -135 -254 -135 -135 -254 -188 -261 -188 -261 -188 -261 -188 -261 -188 -261 -188 -261 -188 -261 -188 -261 -188 -261 -188 -261 -188 -261 -188 -261 -266 -266 -266 -266 -266 -266 -266
	We	Nullinie [kN]	03 1.5 1.5 1.2 1.2 1.2 1.2 1.2 0.4 0.5 0.1 1.8 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
		Rückfallmaximum [kN] (5-Hz-Filter)	-21.2 -21.2 -21.4 -22.4 -22.4 -22.4 -22.5 -22.6 -22.9 -23.9 -23.9 -23.9 -23.9 -23.9 -23.9 -23.9 -23.9 -23.9 -22.0
	0)	Zwischenminimum [kN] (5-Hz-Filter)	
	Ostseite (KF	Ausschwingmaximum [kN] (5-Hz-Filter)	-19.8 -21.6 -21.6 -21.6 -23.1 -23.1 -24.7 -24.0 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -24.0 -29.5 -29.5 -29.5 -24.0 -29.5 -24.0 -29.5 -24.0 -29.5 -24.0 -27.0 -29.5
		Kontraktionsmaximum [kN] (50-Hz-Filter)	-16.8 -16.5 -22.2 -22.2 -21.5 -22.15 -22.5
<pre>cräfte</pre>		Nullinie [kN]	-15.4 -15.2 -15.2 -15.2 -15.3 -15.6 -15.6 -15.6 -15.7 -15.7 -15.7 -15.7 -15.7 -15.7 -15.7 -15.7 -15.7 -15.7 -15.7 -15.7 -15.10
Portall	PW)	Rückfallmaximum [kN] (5-Hz-Filter)	20.5 21.5 21.5 21.5 21.5 21.5 21.5 23.3 23.7 22.6 23.3 23.5 23.6 23.6 23.6 23.6 23.6 23.6 23.6 23.6
		Zwischenminimum [kN] (5-Hz-Filter)	-13.1 -13.1 -13.8 -13.8 -12.4 -11.4 -11.4 -12.5 -12.5 -12.5 -12.3 -12.3 -12.3 -12.3 -12.3 -12.6 -12.3 -12.6 -12.3 -12.6
	seite (K	Ausschwingmaximum [kN] (5-Hz-Filter)	-20.1 -20.1 -21.1 -21.1 -22.9 -22.9 -22.9 -23.4 -23.3 -22.9 -24.5 -24.5 -24.7 -24.5
	West	Kontraktionsmaximum [kN] (50-Hz-Filter)	-16.9 -16.9 -16.4 -16.4 -16.4 -21.3 -21.3 -21.5 -21.5 -21.5 -22.5 -28.5 -28.5 -38.7 -28.5 -38.7 -28.3 -38.7 -28.3 -38.7 -28.3 -38.7 -28.3 -38.7 -28.3 -38.7 -28.3 -28.3 -28.3 -28.3 -28.3 -28.5 -29.5 -28.5 -29.5
		Nullinie [kN]	-15.5 -15.5 -15.2 -15.2 -15.2 -15.6 -15.3 -15.3 -15.3 -15.5 -15.5 -15.5 -15.6 -15.6 -15.6 -15.6 -15.6 -15.6 -15.6 -15.6 -15.6 -15.6 -15.6 -15.6 -15.6 -15.6 -15.6 -15.6 -15.6 -15.6 -15.7 -15.7 -15.7 -15.6 -15.7 -15.7 -15.7 -15.6 -15.7 -15.7 -15.3 -15.0 -15.2 -15.3 -15.0 -15.2 -15.0
	ß	Kurzschlußdauer [sec]	0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
(bu	ırzschlu	leff [kA]	20.8 20.1 20.1 20.1 20.1 20.1 20.1 20.1 20.1
Anordnu	Кu	Î [kA]	53.3 51.5 51.5 51.5 51.5 71.0 771.0 99.9 51.8 51.8 51.8 70.4 70.4 70.4 70.4 71.4 99.5 71.2 71.2 71.2 71.2 71.2 71.2 71.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 5
kV	-	Anahl der Abstandshalter	0000000 222222 22222 222222222222222222
(100	∖ufbai	Teilleiterabstand [cm]	
ersuch	4	Durchhang [cm]	60 60 60 60 60 60 60 60 60 60 60 60 60 6
>		VersNr.	50102098 50102098 50102109 50102101 50102101 50102101 50102105 50102105 50102105 50102105 50102115 50102116 50102116 50102116 50102116 50102112 50102125 50102126 50102127 50102126 50102127 50102127 50102127 50102127 50102127 50102126 50102127 5010222 50002127 5000222 5000222 500022222 50002222222 500022222 500022222 500022222 500022222 500022222222

Tabelle 9.7:Messergebnisse 100-kV-Anordnung, 33 cm Teilleiterabstand, teilbewegl.Abstandshalter

	(C	Druckmaximum [kN] (5-Hz-Filter)	-12 -21 -53 -52 -53 -168 -168 -289 -168 -287 -128 -17 -128 -128 -128 -128 -128 -128 -128 -271
	MAFU	Zugmaximum [kN] (5-Hz-Filter)	18 21 21 45 60 148 148 148 148 148 148 148 148 22 22 23 23 23 24 61 75 100
len	stseite (Kurzschlußmaximum [kN] (5-Hz-Filter)	-6 -15 -25 -25 -25 -25 -25 -175 -175 -175 -175 -11 -151 -151 -174
lastung	Ő	Nullinie [kN]	5.7 2.8 3.8 3.8 3.8 0.2 0.2 0.0 1.0 0.0 1.0 1.1 1.1
stfußbe	W)	Druckmaximum [kN] (5-Hz-Filter)	-18 -52 -52 -58 -58 -103 -123 -170 -170 -23 -278 -170 -60 -176 -176 -334
Ma	(MAFU	Zugmaximum [kN] (5-Hz-Filter)	11 24 61 61 114 1145 145 148 31 48 84 84 884 884 96 1195 229
	stseite (Kurzschlußmaximum [kN] (5-Hz-Filter)	-6 -14 -19 -28 -28 -64 -17 -17 -17 -17 -17 -17 -17 -17 -17 -214 -17 -214
	We	Nullinie [kN]	1.2 1.1 1.4 1.4 1.9 0.3 0.3 0.3 0.3 0.5 0.4 0.5 0.3 0.5 0.3 0.3 1.6 1.0 1.0 1.0
		Rückfallmaximum [kN]	رە بە مە مە مە مە م
		(5-Hz-Filter)	-24 -25 -25 -25 -25 -25 -25 -25 -25 -25 -25
	PO)	Zwischenminimum [kN] (5-Hz-Filter)	-22.3 -21.9 -21.9 -21.9 -20.8 -20.8 -10.3 -19.5 -19.5 -115.7 -115.7 -115.7 -115.7 -115.7 -115.7 -115.0 -115.0 -115.0 -115.0 -115.0 -115.0 -12.3
	Ostseite (K	Ausschwingmaximum [kN] (5-Hz-Filter)	-24.6 -25.1 -25.9 -25.9 -27.1 -27.1 -27.6 -33.6 -33.6 -33.6 -33.6 -33.6 -35.9 -35.9 -35.9 -35.9 -18.3 -18.3 -18.3 -21.9 -21.9 -21.9 -22.19 -22.19
		Kontraktionsmaximum [kN] (50-Hz-Filter)	26.6 26.6 27.5 27.5 27.5 27.5 31.5 31.5 31.5 31.5 27.5 22.9 22.9 22.9 22.9 22.9 22.3 22.3 22.3
kräfte	Westseite (KPW)	Nullinie [kN]	-23.3 -23.3 -23.3 -23.3 -22.8 -22.6 -22.6 -22.6 -23.4 -23.4 -23.4 -17.5
Portal		Rückfallmaximum [kN] (5-Hz-Filter)	-22.9 -23.8 -24.3 -26.2 -26.2 -27.8 -30.7 -19.6 -19.6 -19.6 -19.6 -20.9 -20.9 -20.9 -25.5 -20.9 -25.5
		Zwischenminimum [kN] (5-Hz-Filter)	-20.8 -20.5 -20.5 -21.2 -21.2 -19.4 -15.3 -15.8 -15.8 -15.8 -15.8 -15.8 -15.8 -13.5 -13.5 -13.5 -13.5 -13.5 -8.2
		Ausschwingmaximum [kN] (5-Hz-Filter)	-23.5 -23.5 -23.6 -26.4 -27.8 -27.8 -36.4 -36.3 -36.3 -36.3 -36.3 -36.3 -19.1 -19.1 -19.1 -19.3 -22.2 -22.2 -22.2 -22.2 -23.3 -22.3 -22.3 -22.3 -22.3 -22.3 -22.3 -22.3 -22.3 -22.3 -22.3 -22.3 -22.3 -22.3 -23.5 -23.5 -23.5 -27.8 -27.9 -27.8 -27.8 -27.8 -27.8 -27.9
		Kontraktionsmaximum [kN] (50-Hz-Filter)	-26.6 -26.9 -27.0 -30.1 -30.1 -33.5 -33.5 -33.5 -33.5 -21.8 -23.6 -22.1 -22.1 -22.1 -23.6 -23.9 -23.6 -23.6 -22.1 -22.1
		Nullinie [kN]	-21.9 -21.9 -21.8 -21.8 -21.8 -21.7 -23.3 -23.5 -23.5 -23.5 -23.5 -23.5 -17.5 -23.3 -23.3 -23.3 -23.3 -23.5
		Kurzaahlußdauar [aaa]	
	chluß		
(ɓunu	kurzso	leff [kA]	20 20 20 20 20 20 20 20 20 20 20 20 20 2
Anordi	T	Î [kA]	51.9 52.1 51.7 51.7 71.1 71.1 71.1 101.0 51.9 51.9 51.9 51.0 51.0 101.0 101.0
'/X-C	n	Anahl der Abstandshalter	ນນານາດາວາວ ພາວາວາວາວາ
ו(40)	Aufba	Teilleiterabstand [cm]	000000000000000000000000000000000000000
srsuct		Durchhang [cm]	60 60 60 60 60 60 60 60 80 80 80 80 80 80 80
٨		VersNr.	50102150 50102151 50102151 50102155 50102155 50102155 50102155 50102155 50102156 50102165 50102165 50102165 50102163 50102164 50102164 50102161

Tabelle 9.8: Messergebnisse 400-kV-Anordnung, enges Bündel

	(c	Druckmaximum [kN] (5-Hz-Filter)	-28 -67 -64 -64 -139 -169 -169 -233 -233 -236 -102 -102 -102 -162 -162 -162 -162 -162 -162 -266 -274 -172 -255 -274
	tseite (MAFU	Zugmaximum [kN] (5-Hz-Filter)	23 23 52 33 81 91 192 192 55 55 55 55 55 69 81 151 151 151 142 93 93 93
len		Kurzschlußmaximum [kN] (5-Hz-Filter)	-33 -35 -35 -35 -46 -58 -171 -171 -171 -173 -59 -59 -72 -72 -72 -72 -73 -72 -73 -73 -107 -107 -107 -107 -110
lastung	õ	Nullinie [kN]	0.4 -0.1 1.6 1.1.1
stfußbe	(M	Druckmaximum [kN] (5-Hz-Filter)	-28 -47 -47 -66 -140 -140 -140 -233 -333 -140 -59 -59 -73 -103 -103 -103 -1103 -121 -121 -121 -121 -121 -121 -121 -12
Ma	(MAFU	Zugmaximum [kN] (5-Hz-Filter)	25 25 33 53 54 94 176 54 55 55 55 55 55 55 55 55 51 55 55 51 176 81 81 81 91 91 91 181
	stseite	Kurzschlußmaximum [kN] (5-Hz-Filter)	-34 -35 -35 -35 -50 -50 -50 -172 -172 -172 -176 -60 -65 -65 -65 -65 -62 -172 -176 -93 -93 -93 -93 -114 -114 -114 -1152 -152
	We	Nullinie [kN]	0.2 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.6 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
		Rückfallmaximum [kN] (5-Hz-Filter)	-19.2 -20.0 -20.0 -21.2 -21.2 -20.1 -20.1 -20.2 -21.5 -22.5 -21.5 -22.5
	PO)	Zwischenminimum [kN] (5-Hz-Filter)	-15.9 -15.5 -14.7 -14.7 -14.7 -14.7 -12.9 -12.9 -12.9 -12.0 -10.5 -10.
	seite (K	Ausschwingmaximum [kN] (5-Hz-Filter)	-19.4 -19.6 -19.6 -19.6 -22.3 -22.3 -22.5
	Osts	Kontraktionsmaximum [kN] (50-Hz-Filter)	22.2 22.6 22.6 22.6 22.6 22.6 22.3 22.5 26.7 26.7 26.7 26.2 26.2 26.2 26.2 26.2
kräfte		Nullinie [kN]	-17.4 -17.3 -17.3 -17.3 -17.3 -17.3 -17.3 -17.3 -17.2 -17.2 -17.2 -17.5
Portal	(PW)	Rückfallmaximum [kN] (5-Hz-Filter)	-19.7 -20.1 -20.3 -20.8 -20.8 -25.2 -25.2 -35.4 -35.4 -20.5 -20.5 -20.5 -20.5 -20.5 -20.5 -20.5 -20.5 -22.0 -20.5
		Zwischenminimum [kN] (5-Hz-Filter)	-15.6 -15.3 -14.4 -14.4 -12.6 -12.6 -12.6 -12.6 -12.3 -12.6 -12.3 -12.3 -12.3 -12.3 -12.3 -12.3 -12.3 -12.3 -12.3 -12.3 -12.3 -12.3 -12.3 -12.5 -11.2 -12.6
	tseite (k	Ausschwingmaximum [kN] (5-Hz-Filter)	-19.6 -19.7 -19.7 -21.1 -22.1 -22.9 -22.3 -22.3 -22.8 -22.8 -22.4 -21.5 -23.4 -23.4 -23.5 -23.5 -23.5 -23.5 -23.5 -23.5 -23.5 -24.4 -24.4 -24.4 -24.4 -24.4 -24.4 -24.4 -24.4 -24.4 -23.5 -33.5 -23.5
	West	Kontraktionsmaximum [kN] (50-Hz-Filter)	-22.4 -22.5 -22.5 -22.3 -30.7 -30.7 -22.3 -30.7 -25.3 -25.3 -25.3 -25.3 -25.3 -25.3 -25.4 -25.3 -25.5 -25.3 -25.5 -25.3 -25.5 -25.3 -25.5 -25.3 -25.5 -25.3 -25.5 -25.3 -25.5 -25.3 -25.5 -25.3 -25.5 -25.3 -25.5 -25.3 -20.3 -25.3 -20.3 -26.3 -20.3
		Nullinie [kN]	-17:3 -17:2 -17:2 -17:2 -17:2 -17:2 -17:3
	ß	Kurzschlußdauer [sec]	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
(bur	ırzschlu	leff [kA]	20.4 20.1 28.2 28.2 28.2 28.1 20.1 20.1 28.1 28.1 28.1 28.1 28.1 28.1 28.1 28
Anordnu	KL	Î [kA]	52.9 52.1 52.1 52.1 72.5 72.4 102.0 52.1 71.9 52.1 71.9 52.1 101.0 101.0 101.0 102.0 52.0 52.9 52.0 72.3 72.3 77.9 101.0 102.0 100.0
-kV-A	-	Anahl der Abstandshalter	00000000 ++++++++ 00000000
1 (400	ufbai	Teilleiterabstand [cm]	20 20 20 20 20 20 20 20 20 20 20 20 20 2
ersuch	A	Durchhang [cm]	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$
>		VersNr.	50102168 50102169 50102171 50102171 50102171 50102171 50102175 50102176 50102186 50102188 50102190 50102191 50102193 50102193 50102193 50102193 50102193 50102193 50102183 50102173 50102173 50102173 50102173 50102173 50102173 50102173 50102173 50102173 50102173 50102173 50102173 50102173 50102183 50002185 50002185 50002185 5000200000000000000000000000000000000

 Tabelle 9.9:
 Messergebnisse 400-kV-Anordnung, 20 cm Teilleiterabstand

	(c	Druckmaximum [kN] (5-Hz-Filter)	-76 -65 -64 -79 -116 -156 -205 -205 -158 -158 -158 -157 -157 -157 -157 -157 -157 -157 -157
jen	tseite (MAFU	Zugmaximum [kN] (5-Hz-Filter)	74 83 68 87 63 1153 1153 1168 1172 1172 1172 1172 1172 1172 1172 117
		Kurzschlußmaximum [kN] (5-Hz-Filter)	-74 -95 -95 -113 -113 -1127 -1159 -1169 -1160 -1160 -1199 -171 -1199 -171 -1199 -171 -1188 -255 -2556 -2556 -2556 -1718 -1719 -1719 -1719 -1720 -2568 -2668
lastung	ő	Nullinie [kN]	$\begin{array}{c} 0.0\\ 1.13\\ 1.13\\ 1.12\\ 1.12\\ 1.12\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.23\\ $
stfußbe	(M	Druckmaximum [kN] (5-Hz-Filter)	-67 -64 -70 -78 -154 -155 -154 -2113 -154 -187 -143 -143 -143 -143 -143 -143 -143 -143
Ма	(MAFU	Zugmaximum [kN] (5-Hz-Filter)	69 83 66 87 55 105 116 119 119 1190 1190 1190 1190 1137 1155 1190 1137 1155 1190 1137 1155 1190 1252 252 252 1252 1252 1252 1252 12555 12555 12555 12555 12555 12555 12555 12555 12555 12555 12555 1
	stseite	Kurzschlußmaximum [kN] (5-Hz-Filter)	-74 -97 -98 -112 -132 -158 -158 -158 -158 -152 -152 -152 -152 -152 -175 -201 -251 -251 -251 -253 -253 -253 -253 -253 -253 -253 -253
	We	Nullinie [kN]	0.5 0.6 0.2 1.7 -0.7 -0.2 0.8 0.4 0.4 0.4 0.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
		Rückfallmaximum [kN] (5-Hz-Filter)	-21.4 -21.4 -21.4 -21.4 -21.4 -22.6 -22.6 -22.6 -22.6 -22.6 -22.6 -29.3 -22.6 -29.3 -20.5 -29.3 -20.5 -20.3 -20.5 -20.3 -20.5 -20.3 -20.5 -20.3 -20.5 -20.3 -20.5 -20.3 -20.5 -20.3 -20.5 -20.3 -20.5 -20.3 -20.5 -20.3 -20.5 -20.3 -20.5 -20.3 -20.5 -20.3 -20.5 -20.3 -20.5 -20.3 -20.5
	PO)	Zwischenminimum [kN] (5-Hz-Filter)	-12.6 -13.6 -13.1 -13.1 -13.1 -13.5 -9.8 -10.3 -10.5 -10.9 -10.5 -10.9 -10.6 -6.9 -8.2 -6.9 -6.9 -6.9 -6.9 -7.3 -7.5 -7.3 -7.5 -7.5 -7.5 -7.5 -7.5 -7.5 -7.5 -7.5
	seite (KI	Ausschwingmaximum [kN] (5-Hz-Filter)	-2335 -2335 -2335 -2335 -2335 -2333 -2296 -2268 -268 -2668 -
	Osts	Kontraktionsmaximum [kN] (50-Hz-Filter)	24.6 24.6 24.2 24.2 26.6 26.6 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5
kräfte	(PW)	Nullinie [kN]	-17.3 -17.3 -17.3 -17.3 -17.5 -17.3 -17.5 -17.5 -17.5 -17.5 -17.5 -17.5 -17.5 -17.5 -17.5 -17.5 -17.5 -17.5 -17.8 -17.8 -17.8 -17.8
Portal		Rückfallmaximum [kN] (5-Hz-Filter)	-21.1 -21.5 -21.5 -21.5 -21.5 -24.7 -24.7 -26.2 -35.0 -35.0 -35.0 -35.0 -35.0 -35.0 -35.0 -35.1 -25.7 -25.7 -25.1 -25.1 -25.1 -25.3 -25.3 -25.3 -25.3 -25.4 -25.3 -25.4 -25.3 -25.4 -25.3 -25.4 -25.3 -25.4 -25.3 -25.4 -25.3 -25.4 -25.3 -25.4 -25.3 -25.4 -25.3 -25.4 -25.4 -25.5 -25.5 -25.5 -25.5 -25.7
		Zwischenminimum [kN] (5-Hz-Filter)	-11.5 -11.5 -11.6 -11.6 -11.6 -12.0 -12.0 -12.2 -11.0 -11.0 -11.0 -12.2 -1.1.2 -2.3 -2.1 -2.3 -2.3 -2.3 -2.3 -2.3 -2.3 -2.3 -1.7 -2.3 -3.4 -2.3 -3.4 -2.3 -3.4 -2.3 -3.6 -2.3 -3.6 -2.3 -3.6 -1.7 -3.6 -1.1 -5 -1.0 -1.0 -1.0 -2.6 -1.0 -2.6 -1.0 -2.6 -1.0 -2.6 -1.0 -2.6 -1.0 -2.6 -1.0 -2.6 -1.0 -2.6 -1.0 -2.6 -1.0 -2.6 -2.6 -2.6 -2.6 -2.6 -2.6 -2.6 -2.6
	tseite (Þ	Ausschwingmaximum [kN] (5-Hz-Filter)	-23.4 -23.5 -23.6 -23.6 -23.6 -23.6 -28.0 -28.0 -28.0 -28.0 -28.0 -28.0 -28.0 -28.0 -28.0 -28.0 -28.0 -27.5
	West	Kontraktionsmaximum [kN] (50-Hz-Filter)	-23.7 -23.7 -23.7 -27.9 -27.9 -27.9 -28.3 -28.3 -28.7 -28.7 -28.7 -28.7 -28.7 -28.7 -28.5 -28.5 -28.5 -28.5 -28.4 -28.4 -28.5 -28.4 -28.5 -28.4 -28.5 -28.4 -28.5 -28.4 -28.5
		Nullinie [kN]	-17:0 -17:0
	Iß	Kurzschlußdauer [sec]	0.32 0.32
(bur	ırzschlu	leff [kA]	20.6 29.0 29.0 29.0 29.0 20.1 20.1 20.1 20.1 20.1 20.1 20.1 20
Anordni	KI	Î [kA]	53.2 53.3 53.3 52.9 73.6 73.6 73.6 71.6 51.6 51.6 51.3 71.5 71.5 71.5 71.5 71.5 71.5 71.5 71.5
-kV-/	-	Anahl der Abstandshalter	0000000 ++++++ 00000000
(400	ufbaı	Teilleiterabstand [cm]	$\begin{smallmatrix} & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & $
ersuch	A	Durchhang [cm]	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ &$
>		VersNr.	50102195 50102196 50102196 50102198 50102198 50102200 50102202 50102202 50102205 50102206 50102210 50102212 50102212 50102212 50102213 50102213 50102213 50102213 50102213 50102215

Tabelle 9.10: Messergebnisse 400-kV-Anordnung, 40 cm Teilleiterabstand

Versuch (400-kV-Anordnung)							,	Abstand	dshalte	r	
	Aufbau Kurzschluß Ah. 1							Ah	Ah. 2		
VersNr.	Durchhang [cm]	Teilleiterabstand [cm]	Anahl der Abstandshalter	Ĵ [kA]	l _{eff} [kA]	Kurzschlußdauer [sec]		Nullinie [kN]	Kontraktionsmaximum [kN] (50-Hz-Filter)	Nullinie [kN]	Kontraktionsmaximum [kN] (50-Hz-Filter)
50102206 50102207 50102208 50102209 50102210 50102212 50102212 50102213 50102214 50102221 50102222 50102223 50102218 50102219 50102219 50102215 50102216 50102217	80 80 80 80 80 80 80 80 80 80 80 80 80 8	40 40 40 40 40 40 40 40 40 40 40 40 40 4	1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2	51.6 52.0 51.9 71.4 71.3 71.5 100.0 101.0 101.0 51.3 52.1 52.0 72.1 71.5 71.5 101.0 101.0 101.0	20.1 20.2 28.2 28.2 28.2 40.4 40.4 40.3 20.1 20.1 20.1 20.2 28.3 28.2 28.2 40.4 40.5	0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3		0.2 0.2 -1.3 -1.3 0.4 -4.2 0.2 0.5 0.5 0.5 0.5 0.5 -12.6 -4.4 -2.4	-2.6 -3.6 -3.6 -6.6 -5.0 -12.1 -9.0 -8.5 -2.8 -4.0 -4.1 -5.3 -5.3 -5.3 -19.8 -14.1 -12.0	0.4 0.2 0.4 0.4 0.3 0.3 0.2 1.7 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.5 0.6	-2.1 -3.5 -3.5 -4.2 -4.4 -7.5 -7.7 -3.7 -1.9 -3.0 -3.0 -5.3 -4.8 -4.4 -7.5 -6.9 -6.9

Tabelle 9.11:Messergebnisse 400-kV-Anordnung, 40 cm Teilleiterabstand,Kräfte in den Abstandshaltern